概述
最大公约数算法分析
欧几里德算法
do r←a%b
a←b
b←r
return a
时间复杂度:O(lgn)(最坏情况:斐波那契数列相邻的两项)
空间复杂度:O(1)
但是,对于大整数来说,取模运算非常耗时
Stein算法
r←0
while b>0
do if a偶,b偶 then a←a>>1 b←b>>1 r←r+1
else if a偶,b奇 then a←a>>1
else if a奇,b偶 then b←b>>1
else if a奇,b奇 then a←(a-b)>>1
if a<b then 交换a,b
return a<<r
原理:gcd(ka,kb)=k*gcd(a,b)
最大特点:只有移位和加减法计算,避免了大整数的取模运算
unsigned MaxDivisor(unsigned a, unsigned b)
{
unsigned c = 0;
while(1)
{
// 退出条件
if(a==0)
return b << c;
else if(b == 0)
return a << c;
// 为提高速度,采用位的与运算,避免用取模判断奇偶
if(!(a & 1) && !(b & 1)) //a,b 都是偶数
{
a >>= 1; b >>= 1; ++c;
}
else if(!(a & 1) && (b & 1)) //a偶 b奇
{
a >>= 1;
}
else if((a & 1) && !(b & 1)) //a奇 b偶
{
b >>= 1;
}
else if((a & 1) && (b & 1)) //a,b都是奇数
{
unsigned tmp = a>b?b:a; //取较小的一个
a = a>b?a-b:(b-a); //绝对差值
b = tmp;
}
}
}
扩展欧几里德算法
基本算法
对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。
【证明】
设 a>b
1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;2,ab!=0 时
设 :ax1+by1=gcd(a,b);
显然也有:bx2+(a mod b)y2=gcd(b,a mod b);
根据朴素的欧几里德 原理有 gcd(a,b)=gcd(b,a mod b);
则:ax1+by1=bx2+(a mod b)y2;
即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;
根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;
这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。
扩展欧几里得递归代码:
int exgcd(int a,int b,int &x,int &y)
{
if(b==0)
{
x=1;
y=0;
return a;
}
int r=exgcd(b,a%b,x,y);
int t=x;
x=y;
y=t-a/b*y;
return r;
}
非递归代码:
int exgcd(int m,int n,int &x,int &y)
{
int x1,y1,x0,y0;
x0=1; y0=0;
x1=0; y1=1;
x=0; y=1;
int r=m%n;
int q=(m-r)/n;
while(r)
{
x=x0-q*x1; y=y0-q*y1;
x0=x1; y0=y1;
x1=x; y1=y;
m=n; n=r; r=m%n;
q=(m-r)/n;
}
return n;
}
应用
扩展欧几里德算法的应用主要有以下三方面:
(1)求解不定方程;
(2)求解模线性方程(线性同余方程);
(3)求解模的逆元;
(1)使用扩展欧几里德算法解决不定方程的办法:
对于不定整数方程pa+qb=c,若 c mod Gcd(p, q)=0,则该方程存在整数解,否则不存在整数解。
上面已经列出找一个整数解的方法,在找到p * a+q * b = Gcd(p, q)的一组解p0,q0后,p * a+q * b = Gcd(p, q)的其他整数解满足:
p = p0 + b/Gcd(p, q) * t
q = q0 - a/Gcd(p, q) * t(其中t为任意整数)
至于pa+qb=c的整数解,只需将p * a+q * b = Gcd(p, q)的每个解乘上 c/Gcd(p, q) 即可。
在找到p * a+q * b = Gcd(a, b)的一组解p0,q0后,应该是得到p * a+q * b = c的一组解p1 = p0*(c/Gcd(a,b)),q1 = q0*(c/Gcd(a,b)),
p * a+q * b = c的其他整数解满足:
bool linear_equation(int a,int b,int c,int &x,int &y)
{
int d=exgcd(a,b,x,y);
if(c%d)
return false;
int k=c/d;
x*=k; y*=k;
//求得的只是其中一组解
return true;
}
(2)用扩展欧几里德算法求解模线性方程的方法:
同余方程ax≡b (mod n)对于未知数 x 有解,当且仅当 gcd(a,n) | b。且方程有解时,方程有 gcd(a,n) 个解。
求解方程 ax≡b (mod n)相当于求解方程 ax+ ny= b, (x, y为整数)
设 d= gcd(a,n),假如整数 x 和 y,满足 d= ax+ ny(用扩展欧几里德得出)。如果 d| b,则方程
a* x0+ n* y0= d, 方程两边乘以 b/ d,(因为 d|b,所以能够整除),得到 a* x0* b/ d+ n* y0* b/ d= b。
所以 x= x0* b/ d,y= y0* b/ d 为 ax+ ny= b 的一个解,所以 x= x0* b/ d 为 ax= b (mod n ) 的解。
ax≡b (mod n)的一个解为 x0= x* (b/ d ) mod n,且方程的 d 个解分别为 xi= (x0+ i* (n/ d ))mod n {i= 0... d-1}。
设ans=x*(b/d),s=n/d;
方程ax≡b (mod n)的最小整数解为:(ans%s+s)%s;
相关证明:
证明方程有一解是: x0 = x'(b/d) mod n;
由a*x0 = a*x'(b/d) (mod n)
a*x0 = d (b/d) (mod n) (由于 ax' = d (mod n))
= b (mod n)
证明方程有d个解: xi = x0 + i*(n/d) (mod n);
由 a*xi (mod n) = a * (x0 + i*(n/d)) (mod n)
= (a*x0+a*i*(n/d)) (mod n)
= a * x0 (mod n)(由于 d | a)
= b
首先看一个简单的例子:
5x=4(mod3)
解得x = 2,5,8,11,14.......
由此可以发现一个规律,就是解的间隔是3.
那么这个解的间隔是怎么决定的呢?
如果可以设法找到第一个解,并且求出解之间的间隔,那么就可以求出模的线性方程的解集了.
我们设解之间的间隔为dx.
那么有
a*x = b(mod n);
a*(x+dx) = b(mod n);
两式相减,得到:
a*dx(mod n)= 0;
也就是说a*dx就是a的倍数,同时也是n的倍数,即a*dx是a 和 n的公倍数.为了求出dx,我们应该求出a 和 n的最小公倍数,此时对应的dx是最小的.
设a 和 n的最大公约数为d,那么a 和 n 的最小公倍数为(a*n)/d.
即a*dx = a*n/d;
所以dx = n/d.
因此解之间的间隔就求出来了.
代码如下:
bool modular_linear_equation(int a,int b,int n)
{
int x,y,x0,i;
int d=exgcd(a,n,x,y);
if(b%d)
return false;
x0=x*(b/d)%n;
//特解
for(i=1;i<d;i++)
printf("%dn",(x0+i*(n/d))%n);
return true;
}
(3)用欧几里德算法求模的逆元:
同余方程ax≡b (mod n),如果 gcd(a,n)== 1,则方程只有唯一解。
在这种情况下,如果 b== 1,同余方程就是 ax=1 (mod n ),gcd(a,n)= 1。
这时称求出的 x 为 a 的对模 n 乘法的逆元。
对于同余方程 ax= 1(mod n ), gcd(a,n)= 1 的求解就是求解方程
ax+ ny= 1,x, y 为整数。这个可用扩展欧几里德算法求出,原同余方程的唯一解就是用扩展欧几里德算法得出的 x 。
最后
以上就是唠叨羊为你收集整理的ACM 进阶学习第一课----同余相关之欧几里得算法及其扩展(2)最大公约数算法分析扩展欧几里德算法的全部内容,希望文章能够帮你解决ACM 进阶学习第一课----同余相关之欧几里得算法及其扩展(2)最大公约数算法分析扩展欧几里德算法所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复