概述
从最常见的裴波那切数列说起
斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:
清单 1. 简单输出斐波那契數列前 N 个数
def fab(max): n, a, b = 0, 0, 1 while n < max: print b a, b = b, a + b n = n + 1
执行 fab(5),我们可以得到如下输出:
>>> fab(5) 1 1 2 3 5
结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。
要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:
清单 2. 输出斐波那契數列前 N 个数第二版
def fab(max): n, a, b = 0, 0, 1 L = [] while n < max: L.append(b) a, b = b, a + b n = n + 1 return L
可以使用如下方式打印出 fab 函数返回的 List:
>>> for n in fab(5): ... print n ... 1 1 2 3 5
改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List
清单 3. 通过 iterable 对象来迭代
会导致生成一个 1000 个元素的 List,而代码:
则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。
利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:
清单 4. 第三个版本
class Fab(object): def __init__(self, max): self.max = max self.n, self.a, self.b = 0, 0, 1 def __iter__(self): return self def next(self): if self.n < self.max: r = self.b self.a, self.b = self.b, self.a + self.b self.n = self.n + 1 return r raise StopIteration()
Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:
>>> for n in Fab(5): ... print n ... 1 1 2 3 5
然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:
清单 5. 使用 yield 的第四版
def fab(max): n, a, b = 0, 0, 1 while n < max: yield b # print b a, b = b, a + b n = n + 1
'''
第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。
调用第四版的 fab 和第二版的 fab 完全一致:
>>> for n in fab(5): ... print n ... 1 1 2 3 5
简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。
也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:
清单 6. 执行流程
>>> f = fab(5) >>> f.next() 1 >>> f.next() 1 >>> f.next() 2 >>> f.next() 3 >>> f.next() 5 >>> f.next() Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。
我们可以得出以下结论:
一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。
yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。
如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:
清单 7. 使用 isgeneratorfunction 判断
>>> from inspect import isgeneratorfunction >>> isgeneratorfunction(fab) True
要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:
清单 8. 类的定义和类的实例
>>> import types >>> isinstance(fab, types.GeneratorType) False >>> isinstance(fab(5), types.GeneratorType) True
fab 是无法迭代的,而 fab(5) 是可迭代的:
>>> from collections import Iterable >>> isinstance(fab, Iterable) False >>> isinstance(fab(5), Iterable) True
每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:
>>> f1 = fab(3) >>> f2 = fab(5) >>> print 'f1:', f1.next() f1: 1 >>> print 'f2:', f2.next() f2: 1 >>> print 'f1:', f1.next() f1: 1 >>> print 'f2:', f2.next() f2: 1 >>> print 'f1:', f1.next() f1: 2 >>> print 'f2:', f2.next() f2: 2 >>> print 'f2:', f2.next() f2: 3 >>> print 'f2:', f2.next() f2: 5
return 的作用
在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。
另一个例子
另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:
清单 9. 另一个 yield 的例子
def read_file(fpath): BLOCK_SIZE = 1024 with open(fpath, 'rb') as f: while True: block = f.read(BLOCK_SIZE) if block: yield block else: return
还有一个更直观的更容易理解的例子:
yield是生成的意思,但是在python中则是作为生成器理解,生成器的用处主要可以迭代,这样简化了很多运算模型。
yield是一个表达式,是有返回值的.
当一个函数中含有yield时,它不再是一个普通的函数,而是一个生成器.当该函数被调用时不会自动执行,而是暂停,见第一个例子:
例1:
>>> def mygenerator(): ... print 'start...' ... yield 5 ... >>> mygenerator() //在此处调用,并没有打印出start...说明存在yield的函数没有被运行,即暂停 <generator object mygenerator at 0xb762502c> >>> mygenerator().next() //调用next()即可让函数运行. start... 5 >>>
如一个函数中出现多个yield则next()会停止在下一个yield前,见例2:
例2:
>>> def fun2(): ... print 'first' ... yield 5 ... print 'second' ... yield 23 ... print 'end...' ... >>> g1 = fun2() >>> g1.next() //第一次运行,暂停在yield 5 first 5 >>> g1.next() //第二次运行,暂停在yield 23 second 23 >>> g1.next() //第三次运行,由于之后没有yield,再次next()就会抛出错误 end... Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration >>>
为什么yield 5会输出5,yield 23会输出23?
我们猜测可能是因为yield是表达式,存在返回值.
那么这是否可以认为yield 5的返回值一定是5吗?实际上并不是这样,这个与send函数存在一定的关系,这个函数实质上与next()是相似的,区别是send是传递yield表 达式的值进去,而next不能传递特定的值,只能传递None进去,因此可以认为g.next()和g.send(None)是相同的。见例3:
例3:
>>> def fun(): ... print 'start...' ... m = yield 5 ... print m ... print 'middle...' ... d = yield 12 ... print d ... print 'end...' ... >>> m = fun() //创建一个对象 >>> m.next() //会使函数执行到下一个yield前 start... 5 >>> m.send('message') //利用send()传递值 message //send()传递进来的 middle... 12 >>> m.next() None //可见next()返回值为空 end... Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
至此还没有说yield在这种语句“m = yield 5”的用法,下面详细描述
1. 包含yield的函数
假如你看到某个函数包含了yield,这意味着这个函数已经是一个Generator,它的执行会和其他普通的函数有很多不同。比如下面的简单的函数:
def h(): print 'To be brave' yield 5 h()
可以看到,调用h()之后,print 语句并没有执行!这就是yield,那么,如何让print 语句执行呢?这就是后面要讨论的问题,通过后面的讨论和学习,就会明白yield的工作原理了。
2. yield是一个表达式
Python2.5以前,yield是一个语句,但现在2.5中,yield是一个表达式(Expression),比如:
m = yield 5
表达式(yield 5)的返回值将赋值给m,所以,认为 m = 5 是错误的。那么如何获取(yield 5)的返回值呢?需要用到后面要介绍的send(msg)方法。
3. 透过next()语句看原理
现在,我们来揭晓yield的工作原理。我们知道,我们上面的h()被调用后并没有执行,因为它有yield表达式,因此,我们通过next()语句让它执行。next()语句将恢复Generator执行,并直到下一个yield表达式处。比如:
def h(): print 'Wen Chuan' yield 5 print 'Fighting!' c = h() c.next()
c.next()调用后,h()开始执行,直到遇到yield 5,因此输出结果:
Wen Chuan 5 #在交互式环境中才会出现5,在文件中运行则没有。 原因:在交互式环境中,会显示表达式的值;在文件中运行代码只会输出打印的值
当我们再次调用c.next()时,会继续执行,直到找到下一个yield表达式。由于后面没有yield了,因此会拋出异常(以下结果也是在交互式环境中运行的):
>>> c.next() Fighting! Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
4. send(msg) 与 next()
了解了next()如何让包含yield的函数执行后,我们再来看另外一个非常重要的函数 send(msg)。其实next()和send()在一定意义上作用是相似的,区别是send()可以传递yield表达式的值进去,而next()不 能传递特定的值,只能传递None进去。因此,我们可以看做
c.next() 和 c.send(None) 作用是一样的。
来看这个例子:
def h(): print 'Wen Chuan', m = yield 5 # Fighting! print m d = yield 12 print 'We are together!' c = h() c.next() #相当于c.send(None) c.send('Fighting!') #(yield 5)表达式被赋予了'Fighting!'
输出的结果为:
Wen Chuan Fighting!
需要提醒的是,第一次调用时,请使用next()语句或是send(None),不能使用send发送一个非None的值,否则会出错的,因为没有yield语句来接收这个值。
5. send(msg) 与 next()的返回值
send(msg) 和 next()是有返回值的,它们的返回值很特殊,返回的是下一个yield表达式的参数。比如yield 5,则返回 5 。到这里,是不是明白了一些什么东西?本文第一个例子中,通过for i in alist 遍历 Generator,其实是每次都调用了alist.Next(),而每次alist.Next()的返回值正是yield的参数,即我们开始认为被压进 去的东东。我们再延续上面的例子:
1 def h(): 2 print 'Wen Chuan', 3 m = yield 5 # Fighting! 4 print m 5 d = yield 12 6 print 'We are together!' 7 8 c = h() 9 m = c.next() #m 获取了yield 5 的参数值 5 10 d = c.send('Fighting!') #d 获取了yield 12 的参数值12 11 print 'We will never forget the date', m, '.', d
输出结果:
Wen Chuan Fighting!
We will never forget the date 5 . 12
执行逻辑:
第8行:产生生成器c
第9行:调用c.next(),函数停留在第三行,把5作为c.next()的返回值,然后生成器暂停;
第10行:调用c.send('Fighting!'),从第三行继续执行,send函数的参数'Fighting!'作为yield的返回值,并赋值给左侧变量m,然后继续执行到第四行,遇到yield,停止执行,12作为c.send('Fighting!')的返回值。
最终,输出第二行的print,第四行的m。Wen Chuan Fighting!;然后,
第11行:由于第九行的m为5,第10行的d为12,在第十一行输出:We will never forget the date 5 . 12
验证例子(为了更好的理解,请手动验证输出):
import time def func(n): for i in range(0, n): arg = yield i print('func:', arg) f = func(10) while True: print('main:', next(f)) print('main:', f.send(100)) time.sleep(1)
6. throw() 与 close()中断 Generator
中断Generator是一个非常灵活的技巧,可以通过throw抛出一个GeneratorExit异常来终止Generator。Close()方法作用是一样的,其实内部它是调用了throw(GeneratorExit)的。我们看:
def close(self): try: self.throw(GeneratorExit) except (GeneratorExit, StopIteration): pass else: raise RuntimeError("generator ignored GeneratorExit") # Other exceptions are not caught
因此,当我们调用了close()方法后,再调用next()或是send(msg)的话会抛出一个异常:
执行的代码:
def h(): print 'Wen Chuan', m = yield 5 # Fighting! print m d = yield 12 print 'We are together!' c = h() m = c.next() #m 获取了yield 5 的参数值 5 c.close() d = c.send('Fighting!') #d 获取了yield 12 的参数值12 print 'We will never forget the date', m, '.', d
报错结果:
Traceback (most recent call last): Wen Chuan File "C:/Users/alan/workspace/demo/yield_test.py", line 62, in <module> d = c.send('Fighting!') #d 获取了yield 12 的参数值12 StopIteration
最后
以上就是潇洒蛋挞为你收集整理的Python3学习(五十一):python yield生成器的使用的全部内容,希望文章能够帮你解决Python3学习(五十一):python yield生成器的使用所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复