我是靠谱客的博主 激动发箍,最近开发中收集的这篇文章主要介绍java 中提供的默认的快速排序的实现,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

/*
 * Copyright (c) 1996, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/**
 * Sort: a class that uses the quicksort algorithm to sort an
 *       array of objects.
 *
 * @author Sunita Mani
 */

package sun.misc;

public class Sort {

    private static void swap(Object arr[], int i, int j) {
        Object tmp;

        tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }

    /**
     * quicksort the array of objects.
     *
     * @param arr[] - an array of objects
     * @param left - the start index - from where to begin sorting
     * @param right - the last index.
     * @param comp - an object that implemnts the Compare interface to resolve thecomparison.
     */
    public static void quicksort(Object arr[], int left, int right, Compare comp) {
        int i, last;

        if (left >= right) { /* do nothing if array contains fewer than two */
            return;          /* two elements */
        }
        swap(arr, left, (left+right) / 2);
        last = left;
        for (i = left+1; i <= right; i++) {
            if (comp.doCompare(arr[i], arr[left]) < 0) {
                swap(arr, ++last, i);
            }
        }
        swap(arr, left, last);
        quicksort(arr, left, last-1, comp);
        quicksort(arr, last+1, right, comp);
    }

    public static void quicksort(Object arr[], Compare comp) {
        quicksort(arr, 0, arr.length-1, comp);
    }
}


java中还有一个版本


在JDK7 中新增了java.util.DualPivotQuicksort这个类,里面实现于2009年发表的Dual-Pivot Quicksort 算法。其主要的设计是改进了Quicksort算法。使之效率大幅提高。为些Collections.sort(),Arrays.sort()等的实现部分(现在主要是原始类型数据,其它类型应当在测试开发中,根据其注释将来会改)使用了这个类。通过对比JDK7与JDK5的Arrays类发现JDK7中做了非常大的改变。

采用多路快速排序法,比单路快速排序法有更好的性能。


资料网站:
http://permalink.gmane.org/gmane.comp.java.openjdk.core-libs.devel/2628
http://iaroslavski.narod.ru/quicksort/

/*
 * Copyright (c) 2009, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.util;

/**
 * This class implements the Dual-Pivot Quicksort algorithm by
 * Vladimir Yaroslavskiy, Jon Bentley, and Josh Bloch. The algorithm
 * offers O(n log(n)) performance on many data sets that cause other
 * quicksorts to degrade to quadratic performance, and is typically
 * faster than traditional (one-pivot) Quicksort implementations.
 *
 * @author Vladimir Yaroslavskiy
 * @author Jon Bentley
 * @author Josh Bloch
 *
 * @version 2011.02.11 m765.827.12i:57pm
 * @since 1.7
 */
final class DualPivotQuicksort {

    /**
     * Prevents instantiation.
     */
    private DualPivotQuicksort() {}

    /*
     * Tuning parameters.
     */

    /**
     * The maximum number of runs in merge sort.
     */
    private static final int MAX_RUN_COUNT = 67;

    /**
     * The maximum length of run in merge sort.
     */
    private static final int MAX_RUN_LENGTH = 33;

    /**
     * If the length of an array to be sorted is less than this
     * constant, Quicksort is used in preference to merge sort.
     */
    private static final int QUICKSORT_THRESHOLD = 286;

    /**
     * If the length of an array to be sorted is less than this
     * constant, insertion sort is used in preference to Quicksort.
     */
    private static final int INSERTION_SORT_THRESHOLD = 47;

    /**
     * If the length of a byte array to be sorted is greater than this
     * constant, counting sort is used in preference to insertion sort.
     */
    private static final int COUNTING_SORT_THRESHOLD_FOR_BYTE = 29;

    /**
     * If the length of a short or char array to be sorted is greater
     * than this constant, counting sort is used in preference to Quicksort.
     */
    private static final int COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR = 3200;

    /*
     * Sorting methods for seven primitive types.
     */

    /**
     * Sorts the specified array.
     *
     * @param a the array to be sorted
     */
    public static void sort(int[] a) {
        sort(a, 0, a.length - 1);
    }

    /**
     * Sorts the specified range of the array.
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     */
    public static void sort(int[] a, int left, int right) {
        // Use Quicksort on small arrays
        if (right - left < QUICKSORT_THRESHOLD) {
            sort(a, left, right, true);
            return;
        }

        /*
         * Index run[i] is the start of i-th run
         * (ascending or descending sequence).
         */
        int[] run = new int[MAX_RUN_COUNT + 1];
        int count = 0; run[0] = left;

        // Check if the array is nearly sorted
        for (int k = left; k < right; run[count] = k) {
            if (a[k] < a[k + 1]) { // ascending
                while (++k <= right && a[k - 1] <= a[k]);
            } else if (a[k] > a[k + 1]) { // descending
                while (++k <= right && a[k - 1] >= a[k]);
                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
                    int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
                }
            } else { // equal
                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
                    if (--m == 0) {
                        sort(a, left, right, true);
                        return;
                    }
                }
            }

            /*
             * The array is not highly structured,
             * use Quicksort instead of merge sort.
             */
            if (++count == MAX_RUN_COUNT) {
                sort(a, left, right, true);
                return;
            }
        }

        // Check special cases
        if (run[count] == right++) { // The last run contains one element
            run[++count] = right;
        } else if (count == 1) { // The array is already sorted
            return;
        }

        /*
         * Create temporary array, which is used for merging.
         * Implementation note: variable "right" is increased by 1.
         */
        int[] b; byte odd = 0;
        for (int n = 1; (n <<= 1) < count; odd ^= 1);

        if (odd == 0) {
            b = a; a = new int[b.length];
            for (int i = left - 1; ++i < right; a[i] = b[i]);
        } else {
            b = new int[a.length];
        }

        // Merging
        for (int last; count > 1; count = last) {
            for (int k = (last = 0) + 2; k <= count; k += 2) {
                int hi = run[k], mi = run[k - 1];
                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
                    if (q >= hi || p < mi && a[p] <= a[q]) {
                        b[i] = a[p++];
                    } else {
                        b[i] = a[q++];
                    }
                }
                run[++last] = hi;
            }
            if ((count & 1) != 0) {
                for (int i = right, lo = run[count - 1]; --i >= lo;
                    b[i] = a[i]
                );
                run[++last] = right;
            }
            int[] t = a; a = b; b = t;
        }
    }

    /**
     * Sorts the specified range of the array by Dual-Pivot Quicksort.
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     * @param leftmost indicates if this part is the leftmost in the range
     */
    private static void sort(int[] a, int left, int right, boolean leftmost) {
        int length = right - left + 1;

        // Use insertion sort on tiny arrays
        if (length < INSERTION_SORT_THRESHOLD) {
            if (leftmost) {
                /*
                 * Traditional (without sentinel) insertion sort,
                 * optimized for server VM, is used in case of
                 * the leftmost part.
                 */
                for (int i = left, j = i; i < right; j = ++i) {
                    int ai = a[i + 1];
                    while (ai < a[j]) {
                        a[j + 1] = a[j];
                        if (j-- == left) {
                            break;
                        }
                    }
                    a[j + 1] = ai;
                }
            } else {
                /*
                 * Skip the longest ascending sequence.
                 */
                do {
                    if (left >= right) {
                        return;
                    }
                } while (a[++left] >= a[left - 1]);

                /*
                 * Every element from adjoining part plays the role
                 * of sentinel, therefore this allows us to avoid the
                 * left range check on each iteration. Moreover, we use
                 * the more optimized algorithm, so called pair insertion
                 * sort, which is faster (in the context of Quicksort)
                 * than traditional implementation of insertion sort.
                 */
                for (int k = left; ++left <= right; k = ++left) {
                    int a1 = a[k], a2 = a[left];

                    if (a1 < a2) {
                        a2 = a1; a1 = a[left];
                    }
                    while (a1 < a[--k]) {
                        a[k + 2] = a[k];
                    }
                    a[++k + 1] = a1;

                    while (a2 < a[--k]) {
                        a[k + 1] = a[k];
                    }
                    a[k + 1] = a2;
                }
                int last = a[right];

                while (last < a[--right]) {
                    a[right + 1] = a[right];
                }
                a[right + 1] = last;
            }
            return;
        }

        // Inexpensive approximation of length / 7
        int seventh = (length >> 3) + (length >> 6) + 1;

        /*
         * Sort five evenly spaced elements around (and including) the
         * center element in the range. These elements will be used for
         * pivot selection as described below. The choice for spacing
         * these elements was empirically determined to work well on
         * a wide variety of inputs.
         */
        int e3 = (left + right) >>> 1; // The midpoint
        int e2 = e3 - seventh;
        int e1 = e2 - seventh;
        int e4 = e3 + seventh;
        int e5 = e4 + seventh;

        // Sort these elements using insertion sort
        if (a[e2] < a[e1]) { int t = a[e2]; a[e2] = a[e1]; a[e1] = t; }

        if (a[e3] < a[e2]) { int t = a[e3]; a[e3] = a[e2]; a[e2] = t;
            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
        }
        if (a[e4] < a[e3]) { int t = a[e4]; a[e4] = a[e3]; a[e3] = t;
            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
            }
        }
        if (a[e5] < a[e4]) { int t = a[e5]; a[e5] = a[e4]; a[e4] = t;
            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
                }
            }
        }

        // Pointers
        int less  = left;  // The index of the first element of center part
        int great = right; // The index before the first element of right part

        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
            /*
             * Use the second and fourth of the five sorted elements as pivots.
             * These values are inexpensive approximations of the first and
             * second terciles of the array. Note that pivot1 <= pivot2.
             */
            int pivot1 = a[e2];
            int pivot2 = a[e4];

            /*
             * The first and the last elements to be sorted are moved to the
             * locations formerly occupied by the pivots. When partitioning
             * is complete, the pivots are swapped back into their final
             * positions, and excluded from subsequent sorting.
             */
            a[e2] = a[left];
            a[e4] = a[right];

            /*
             * Skip elements, which are less or greater than pivot values.
             */
            while (a[++less] < pivot1);
            while (a[--great] > pivot2);

            /*
             * Partitioning:
             *
             *   left part           center part                   right part
             * +--------------------------------------------------------------+
             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
             * +--------------------------------------------------------------+
             *               ^                          ^       ^
             *               |                          |       |
             *              less                        k     great
             *
             * Invariants:
             *
             *              all in (left, less)   < pivot1
             *    pivot1 <= all in [less, k)     <= pivot2
             *              all in (great, right) > pivot2
             *
             * Pointer k is the first index of ?-part.
             */
            outer:
            for (int k = less - 1; ++k <= great; ) {
                int ak = a[k];
                if (ak < pivot1) { // Move a[k] to left part
                    a[k] = a[less];
                    /*
                     * Here and below we use "a[i] = b; i++;" instead
                     * of "a[i++] = b;" due to performance issue.
                     */
                    a[less] = ak;
                    ++less;
                } else if (ak > pivot2) { // Move a[k] to right part
                    while (a[great] > pivot2) {
                        if (great-- == k) {
                            break outer;
                        }
                    }
                    if (a[great] < pivot1) { // a[great] <= pivot2
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    } else { // pivot1 <= a[great] <= pivot2
                        a[k] = a[great];
                    }
                    /*
                     * Here and below we use "a[i] = b; i--;" instead
                     * of "a[i--] = b;" due to performance issue.
                     */
                    a[great] = ak;
                    --great;
                }
            }

            // Swap pivots into their final positions
            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
            a[right] = a[great + 1]; a[great + 1] = pivot2;

            // Sort left and right parts recursively, excluding known pivots
            sort(a, left, less - 2, leftmost);
            sort(a, great + 2, right, false);

            /*
             * If center part is too large (comprises > 4/7 of the array),
             * swap internal pivot values to ends.
             */
            if (less < e1 && e5 < great) {
                /*
                 * Skip elements, which are equal to pivot values.
                 */
                while (a[less] == pivot1) {
                    ++less;
                }

                while (a[great] == pivot2) {
                    --great;
                }

                /*
                 * Partitioning:
                 *
                 *   left part         center part                  right part
                 * +----------------------------------------------------------+
                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
                 * +----------------------------------------------------------+
                 *              ^                        ^       ^
                 *              |                        |       |
                 *             less                      k     great
                 *
                 * Invariants:
                 *
                 *              all in (*,  less) == pivot1
                 *     pivot1 < all in [less,  k)  < pivot2
                 *              all in (great, *) == pivot2
                 *
                 * Pointer k is the first index of ?-part.
                 */
                outer:
                for (int k = less - 1; ++k <= great; ) {
                    int ak = a[k];
                    if (ak == pivot1) { // Move a[k] to left part
                        a[k] = a[less];
                        a[less] = ak;
                        ++less;
                    } else if (ak == pivot2) { // Move a[k] to right part
                        while (a[great] == pivot2) {
                            if (great-- == k) {
                                break outer;
                            }
                        }
                        if (a[great] == pivot1) { // a[great] < pivot2
                            a[k] = a[less];
                            /*
                             * Even though a[great] equals to pivot1, the
                             * assignment a[less] = pivot1 may be incorrect,
                             * if a[great] and pivot1 are floating-point zeros
                             * of different signs. Therefore in float and
                             * double sorting methods we have to use more
                             * accurate assignment a[less] = a[great].
                             */
                            a[less] = pivot1;
                            ++less;
                        } else { // pivot1 < a[great] < pivot2
                            a[k] = a[great];
                        }
                        a[great] = ak;
                        --great;
                    }
                }
            }

            // Sort center part recursively
            sort(a, less, great, false);

        } else { // Partitioning with one pivot
            /*
             * Use the third of the five sorted elements as pivot.
             * This value is inexpensive approximation of the median.
             */
            int pivot = a[e3];

            /*
             * Partitioning degenerates to the traditional 3-way
             * (or "Dutch National Flag") schema:
             *
             *   left part    center part              right part
             * +-------------------------------------------------+
             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
             * +-------------------------------------------------+
             *              ^              ^        ^
             *              |              |        |
             *             less            k      great
             *
             * Invariants:
             *
             *   all in (left, less)   < pivot
             *   all in [less, k)     == pivot
             *   all in (great, right) > pivot
             *
             * Pointer k is the first index of ?-part.
             */
            for (int k = less; k <= great; ++k) {
                if (a[k] == pivot) {
                    continue;
                }
                int ak = a[k];
                if (ak < pivot) { // Move a[k] to left part
                    a[k] = a[less];
                    a[less] = ak;
                    ++less;
                } else { // a[k] > pivot - Move a[k] to right part
                    while (a[great] > pivot) {
                        --great;
                    }
                    if (a[great] < pivot) { // a[great] <= pivot
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    } else { // a[great] == pivot
                        /*
                         * Even though a[great] equals to pivot, the
                         * assignment a[k] = pivot may be incorrect,
                         * if a[great] and pivot are floating-point
                         * zeros of different signs. Therefore in float
                         * and double sorting methods we have to use
                         * more accurate assignment a[k] = a[great].
                         */
                        a[k] = pivot;
                    }
                    a[great] = ak;
                    --great;
                }
            }

            /*
             * Sort left and right parts recursively.
             * All elements from center part are equal
             * and, therefore, already sorted.
             */
            sort(a, left, less - 1, leftmost);
            sort(a, great + 1, right, false);
        }
    }

    /**
     * Sorts the specified array.
     *
     * @param a the array to be sorted
     */
    public static void sort(long[] a) {
        sort(a, 0, a.length - 1);
    }

    /**
     * Sorts the specified range of the array.
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     */
    public static void sort(long[] a, int left, int right) {
        // Use Quicksort on small arrays
        if (right - left < QUICKSORT_THRESHOLD) {
            sort(a, left, right, true);
            return;
        }

        /*
         * Index run[i] is the start of i-th run
         * (ascending or descending sequence).
         */
        int[] run = new int[MAX_RUN_COUNT + 1];
        int count = 0; run[0] = left;

        // Check if the array is nearly sorted
        for (int k = left; k < right; run[count] = k) {
            if (a[k] < a[k + 1]) { // ascending
                while (++k <= right && a[k - 1] <= a[k]);
            } else if (a[k] > a[k + 1]) { // descending
                while (++k <= right && a[k - 1] >= a[k]);
                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
                    long t = a[lo]; a[lo] = a[hi]; a[hi] = t;
                }
            } else { // equal
                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
                    if (--m == 0) {
                        sort(a, left, right, true);
                        return;
                    }
                }
            }

            /*
             * The array is not highly structured,
             * use Quicksort instead of merge sort.
             */
            if (++count == MAX_RUN_COUNT) {
                sort(a, left, right, true);
                return;
            }
        }

        // Check special cases
        if (run[count] == right++) { // The last run contains one element
            run[++count] = right;
        } else if (count == 1) { // The array is already sorted
            return;
        }

        /*
         * Create temporary array, which is used for merging.
         * Implementation note: variable "right" is increased by 1.
         */
        long[] b; byte odd = 0;
        for (int n = 1; (n <<= 1) < count; odd ^= 1);

        if (odd == 0) {
            b = a; a = new long[b.length];
            for (int i = left - 1; ++i < right; a[i] = b[i]);
        } else {
            b = new long[a.length];
        }

        // Merging
        for (int last; count > 1; count = last) {
            for (int k = (last = 0) + 2; k <= count; k += 2) {
                int hi = run[k], mi = run[k - 1];
                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
                    if (q >= hi || p < mi && a[p] <= a[q]) {
                        b[i] = a[p++];
                    } else {
                        b[i] = a[q++];
                    }
                }
                run[++last] = hi;
            }
            if ((count & 1) != 0) {
                for (int i = right, lo = run[count - 1]; --i >= lo;
                    b[i] = a[i]
                );
                run[++last] = right;
            }
            long[] t = a; a = b; b = t;
        }
    }

    /**
     * Sorts the specified range of the array by Dual-Pivot Quicksort.
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     * @param leftmost indicates if this part is the leftmost in the range
     */
    private static void sort(long[] a, int left, int right, boolean leftmost) {
        int length = right - left + 1;

        // Use insertion sort on tiny arrays
        if (length < INSERTION_SORT_THRESHOLD) {
            if (leftmost) {
                /*
                 * Traditional (without sentinel) insertion sort,
                 * optimized for server VM, is used in case of
                 * the leftmost part.
                 */
                for (int i = left, j = i; i < right; j = ++i) {
                    long ai = a[i + 1];
                    while (ai < a[j]) {
                        a[j + 1] = a[j];
                        if (j-- == left) {
                            break;
                        }
                    }
                    a[j + 1] = ai;
                }
            } else {
                /*
                 * Skip the longest ascending sequence.
                 */
                do {
                    if (left >= right) {
                        return;
                    }
                } while (a[++left] >= a[left - 1]);

                /*
                 * Every element from adjoining part plays the role
                 * of sentinel, therefore this allows us to avoid the
                 * left range check on each iteration. Moreover, we use
                 * the more optimized algorithm, so called pair insertion
                 * sort, which is faster (in the context of Quicksort)
                 * than traditional implementation of insertion sort.
                 */
                for (int k = left; ++left <= right; k = ++left) {
                    long a1 = a[k], a2 = a[left];

                    if (a1 < a2) {
                        a2 = a1; a1 = a[left];
                    }
                    while (a1 < a[--k]) {
                        a[k + 2] = a[k];
                    }
                    a[++k + 1] = a1;

                    while (a2 < a[--k]) {
                        a[k + 1] = a[k];
                    }
                    a[k + 1] = a2;
                }
                long last = a[right];

                while (last < a[--right]) {
                    a[right + 1] = a[right];
                }
                a[right + 1] = last;
            }
            return;
        }

        // Inexpensive approximation of length / 7
        int seventh = (length >> 3) + (length >> 6) + 1;

        /*
         * Sort five evenly spaced elements around (and including) the
         * center element in the range. These elements will be used for
         * pivot selection as described below. The choice for spacing
         * these elements was empirically determined to work well on
         * a wide variety of inputs.
         */
        int e3 = (left + right) >>> 1; // The midpoint
        int e2 = e3 - seventh;
        int e1 = e2 - seventh;
        int e4 = e3 + seventh;
        int e5 = e4 + seventh;

        // Sort these elements using insertion sort
        if (a[e2] < a[e1]) { long t = a[e2]; a[e2] = a[e1]; a[e1] = t; }

        if (a[e3] < a[e2]) { long t = a[e3]; a[e3] = a[e2]; a[e2] = t;
            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
        }
        if (a[e4] < a[e3]) { long t = a[e4]; a[e4] = a[e3]; a[e3] = t;
            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
            }
        }
        if (a[e5] < a[e4]) { long t = a[e5]; a[e5] = a[e4]; a[e4] = t;
            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
                }
            }
        }

        // Pointers
        int less  = left;  // The index of the first element of center part
        int great = right; // The index before the first element of right part

        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
            /*
             * Use the second and fourth of the five sorted elements as pivots.
             * These values are inexpensive approximations of the first and
             * second terciles of the array. Note that pivot1 <= pivot2.
             */
            long pivot1 = a[e2];
            long pivot2 = a[e4];

            /*
             * The first and the last elements to be sorted are moved to the
             * locations formerly occupied by the pivots. When partitioning
             * is complete, the pivots are swapped back into their final
             * positions, and excluded from subsequent sorting.
             */
            a[e2] = a[left];
            a[e4] = a[right];

            /*
             * Skip elements, which are less or greater than pivot values.
             */
            while (a[++less] < pivot1);
            while (a[--great] > pivot2);

            /*
             * Partitioning:
             *
             *   left part           center part                   right part
             * +--------------------------------------------------------------+
             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
             * +--------------------------------------------------------------+
             *               ^                          ^       ^
             *               |                          |       |
             *              less                        k     great
             *
             * Invariants:
             *
             *              all in (left, less)   < pivot1
             *    pivot1 <= all in [less, k)     <= pivot2
             *              all in (great, right) > pivot2
             *
             * Pointer k is the first index of ?-part.
             */
            outer:
            for (int k = less - 1; ++k <= great; ) {
                long ak = a[k];
                if (ak < pivot1) { // Move a[k] to left part
                    a[k] = a[less];
                    /*
                     * Here and below we use "a[i] = b; i++;" instead
                     * of "a[i++] = b;" due to performance issue.
                     */
                    a[less] = ak;
                    ++less;
                } else if (ak > pivot2) { // Move a[k] to right part
                    while (a[great] > pivot2) {
                        if (great-- == k) {
                            break outer;
                        }
                    }
                    if (a[great] < pivot1) { // a[great] <= pivot2
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    } else { // pivot1 <= a[great] <= pivot2
                        a[k] = a[great];
                    }
                    /*
                     * Here and below we use "a[i] = b; i--;" instead
                     * of "a[i--] = b;" due to performance issue.
                     */
                    a[great] = ak;
                    --great;
                }
            }

            // Swap pivots into their final positions
            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
            a[right] = a[great + 1]; a[great + 1] = pivot2;

            // Sort left and right parts recursively, excluding known pivots
            sort(a, left, less - 2, leftmost);
            sort(a, great + 2, right, false);

            /*
             * If center part is too large (comprises > 4/7 of the array),
             * swap internal pivot values to ends.
             */
            if (less < e1 && e5 < great) {
                /*
                 * Skip elements, which are equal to pivot values.
                 */
                while (a[less] == pivot1) {
                    ++less;
                }

                while (a[great] == pivot2) {
                    --great;
                }

                /*
                 * Partitioning:
                 *
                 *   left part         center part                  right part
                 * +----------------------------------------------------------+
                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
                 * +----------------------------------------------------------+
                 *              ^                        ^       ^
                 *              |                        |       |
                 *             less                      k     great
                 *
                 * Invariants:
                 *
                 *              all in (*,  less) == pivot1
                 *     pivot1 < all in [less,  k)  < pivot2
                 *              all in (great, *) == pivot2
                 *
                 * Pointer k is the first index of ?-part.
                 */
                outer:
                for (int k = less - 1; ++k <= great; ) {
                    long ak = a[k];
                    if (ak == pivot1) { // Move a[k] to left part
                        a[k] = a[less];
                        a[less] = ak;
                        ++less;
                    } else if (ak == pivot2) { // Move a[k] to right part
                        while (a[great] == pivot2) {
                            if (great-- == k) {
                                break outer;
                            }
                        }
                        if (a[great] == pivot1) { // a[great] < pivot2
                            a[k] = a[less];
                            /*
                             * Even though a[great] equals to pivot1, the
                             * assignment a[less] = pivot1 may be incorrect,
                             * if a[great] and pivot1 are floating-point zeros
                             * of different signs. Therefore in float and
                             * double sorting methods we have to use more
                             * accurate assignment a[less] = a[great].
                             */
                            a[less] = pivot1;
                            ++less;
                        } else { // pivot1 < a[great] < pivot2
                            a[k] = a[great];
                        }
                        a[great] = ak;
                        --great;
                    }
                }
            }

            // Sort center part recursively
            sort(a, less, great, false);

        } else { // Partitioning with one pivot
            /*
             * Use the third of the five sorted elements as pivot.
             * This value is inexpensive approximation of the median.
             */
            long pivot = a[e3];

            /*
             * Partitioning degenerates to the traditional 3-way
             * (or "Dutch National Flag") schema:
             *
             *   left part    center part              right part
             * +-------------------------------------------------+
             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
             * +-------------------------------------------------+
             *              ^              ^        ^
             *              |              |        |
             *             less            k      great
             *
             * Invariants:
             *
             *   all in (left, less)   < pivot
             *   all in [less, k)     == pivot
             *   all in (great, right) > pivot
             *
             * Pointer k is the first index of ?-part.
             */
            for (int k = less; k <= great; ++k) {
                if (a[k] == pivot) {
                    continue;
                }
                long ak = a[k];
                if (ak < pivot) { // Move a[k] to left part
                    a[k] = a[less];
                    a[less] = ak;
                    ++less;
                } else { // a[k] > pivot - Move a[k] to right part
                    while (a[great] > pivot) {
                        --great;
                    }
                    if (a[great] < pivot) { // a[great] <= pivot
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    } else { // a[great] == pivot
                        /*
                         * Even though a[great] equals to pivot, the
                         * assignment a[k] = pivot may be incorrect,
                         * if a[great] and pivot are floating-point
                         * zeros of different signs. Therefore in float
                         * and double sorting methods we have to use
                         * more accurate assignment a[k] = a[great].
                         */
                        a[k] = pivot;
                    }
                    a[great] = ak;
                    --great;
                }
            }

            /*
             * Sort left and right parts recursively.
             * All elements from center part are equal
             * and, therefore, already sorted.
             */
            sort(a, left, less - 1, leftmost);
            sort(a, great + 1, right, false);
        }
    }

    /**
     * Sorts the specified array.
     *
     * @param a the array to be sorted
     */
    public static void sort(short[] a) {
        sort(a, 0, a.length - 1);
    }

    /**
     * Sorts the specified range of the array.
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     */
    public static void sort(short[] a, int left, int right) {
        // Use counting sort on large arrays
        if (right - left > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) {
            int[] count = new int[NUM_SHORT_VALUES];

            for (int i = left - 1; ++i <= right;
                count[a[i] - Short.MIN_VALUE]++
            );
            for (int i = NUM_SHORT_VALUES, k = right + 1; k > left; ) {
                while (count[--i] == 0);
                short value = (short) (i + Short.MIN_VALUE);
                int s = count[i];

                do {
                    a[--k] = value;
                } while (--s > 0);
            }
        } else { // Use Dual-Pivot Quicksort on small arrays
            doSort(a, left, right);
        }
    }

    /** The number of distinct short values. */
    private static final int NUM_SHORT_VALUES = 1 << 16;

    /**
     * Sorts the specified range of the array.
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     */
    private static void doSort(short[] a, int left, int right) {
        // Use Quicksort on small arrays
        if (right - left < QUICKSORT_THRESHOLD) {
            sort(a, left, right, true);
            return;
        }

        /*
         * Index run[i] is the start of i-th run
         * (ascending or descending sequence).
         */
        int[] run = new int[MAX_RUN_COUNT + 1];
        int count = 0; run[0] = left;

        // Check if the array is nearly sorted
        for (int k = left; k < right; run[count] = k) {
            if (a[k] < a[k + 1]) { // ascending
                while (++k <= right && a[k - 1] <= a[k]);
            } else if (a[k] > a[k + 1]) { // descending
                while (++k <= right && a[k - 1] >= a[k]);
                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
                    short t = a[lo]; a[lo] = a[hi]; a[hi] = t;
                }
            } else { // equal
                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
                    if (--m == 0) {
                        sort(a, left, right, true);
                        return;
                    }
                }
            }

            /*
             * The array is not highly structured,
             * use Quicksort instead of merge sort.
             */
            if (++count == MAX_RUN_COUNT) {
                sort(a, left, right, true);
                return;
            }
        }

        // Check special cases
        if (run[count] == right++) { // The last run contains one element
            run[++count] = right;
        } else if (count == 1) { // The array is already sorted
            return;
        }

        /*
         * Create temporary array, which is used for merging.
         * Implementation note: variable "right" is increased by 1.
         */
        short[] b; byte odd = 0;
        for (int n = 1; (n <<= 1) < count; odd ^= 1);

        if (odd == 0) {
            b = a; a = new short[b.length];
            for (int i = left - 1; ++i < right; a[i] = b[i]);
        } else {
            b = new short[a.length];
        }

        // Merging
        for (int last; count > 1; count = last) {
            for (int k = (last = 0) + 2; k <= count; k += 2) {
                int hi = run[k], mi = run[k - 1];
                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
                    if (q >= hi || p < mi && a[p] <= a[q]) {
                        b[i] = a[p++];
                    } else {
                        b[i] = a[q++];
                    }
                }
                run[++last] = hi;
            }
            if ((count & 1) != 0) {
                for (int i = right, lo = run[count - 1]; --i >= lo;
                    b[i] = a[i]
                );
                run[++last] = right;
            }
            short[] t = a; a = b; b = t;
        }
    }

    /**
     * Sorts the specified range of the array by Dual-Pivot Quicksort.
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     * @param leftmost indicates if this part is the leftmost in the range
     */
    private static void sort(short[] a, int left, int right, boolean leftmost) {
        int length = right - left + 1;

        // Use insertion sort on tiny arrays
        if (length < INSERTION_SORT_THRESHOLD) {
            if (leftmost) {
                /*
                 * Traditional (without sentinel) insertion sort,
                 * optimized for server VM, is used in case of
                 * the leftmost part.
                 */
                for (int i = left, j = i; i < right; j = ++i) {
                    short ai = a[i + 1];
                    while (ai < a[j]) {
                        a[j + 1] = a[j];
                        if (j-- == left) {
                            break;
                        }
                    }
                    a[j + 1] = ai;
                }
            } else {
                /*
                 * Skip the longest ascending sequence.
                 */
                do {
                    if (left >= right) {
                        return;
                    }
                } while (a[++left] >= a[left - 1]);

                /*
                 * Every element from adjoining part plays the role
                 * of sentinel, therefore this allows us to avoid the
                 * left range check on each iteration. Moreover, we use
                 * the more optimized algorithm, so called pair insertion
                 * sort, which is faster (in the context of Quicksort)
                 * than traditional implementation of insertion sort.
                 */
                for (int k = left; ++left <= right; k = ++left) {
                    short a1 = a[k], a2 = a[left];

                    if (a1 < a2) {
                        a2 = a1; a1 = a[left];
                    }
                    while (a1 < a[--k]) {
                        a[k + 2] = a[k];
                    }
                    a[++k + 1] = a1;

                    while (a2 < a[--k]) {
                        a[k + 1] = a[k];
                    }
                    a[k + 1] = a2;
                }
                short last = a[right];

                while (last < a[--right]) {
                    a[right + 1] = a[right];
                }
                a[right + 1] = last;
            }
            return;
        }

        // Inexpensive approximation of length / 7
        int seventh = (length >> 3) + (length >> 6) + 1;

        /*
         * Sort five evenly spaced elements around (and including) the
         * center element in the range. These elements will be used for
         * pivot selection as described below. The choice for spacing
         * these elements was empirically determined to work well on
         * a wide variety of inputs.
         */
        int e3 = (left + right) >>> 1; // The midpoint
        int e2 = e3 - seventh;
        int e1 = e2 - seventh;
        int e4 = e3 + seventh;
        int e5 = e4 + seventh;

        // Sort these elements using insertion sort
        if (a[e2] < a[e1]) { short t = a[e2]; a[e2] = a[e1]; a[e1] = t; }

        if (a[e3] < a[e2]) { short t = a[e3]; a[e3] = a[e2]; a[e2] = t;
            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
        }
        if (a[e4] < a[e3]) { short t = a[e4]; a[e4] = a[e3]; a[e3] = t;
            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
            }
        }
        if (a[e5] < a[e4]) { short t = a[e5]; a[e5] = a[e4]; a[e4] = t;
            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
                }
            }
        }

        // Pointers
        int less  = left;  // The index of the first element of center part
        int great = right; // The index before the first element of right part

        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
            /*
             * Use the second and fourth of the five sorted elements as pivots.
             * These values are inexpensive approximations of the first and
             * second terciles of the array. Note that pivot1 <= pivot2.
             */
            short pivot1 = a[e2];
            short pivot2 = a[e4];

            /*
             * The first and the last elements to be sorted are moved to the
             * locations formerly occupied by the pivots. When partitioning
             * is complete, the pivots are swapped back into their final
             * positions, and excluded from subsequent sorting.
             */
            a[e2] = a[left];
            a[e4] = a[right];

            /*
             * Skip elements, which are less or greater than pivot values.
             */
            while (a[++less] < pivot1);
            while (a[--great] > pivot2);

            /*
             * Partitioning:
             *
             *   left part           center part                   right part
             * +--------------------------------------------------------------+
             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
             * +--------------------------------------------------------------+
             *               ^                          ^       ^
             *               |                          |       |
             *              less                        k     great
             *
             * Invariants:
             *
             *              all in (left, less)   < pivot1
             *    pivot1 <= all in [less, k)     <= pivot2
             *              all in (great, right) > pivot2
             *
             * Pointer k is the first index of ?-part.
             */
            outer:
            for (int k = less - 1; ++k <= great; ) {
                short ak = a[k];
                if (ak < pivot1) { // Move a[k] to left part
                    a[k] = a[less];
                    /*
                     * Here and below we use "a[i] = b; i++;" instead
                     * of "a[i++] = b;" due to performance issue.
                     */
                    a[less] = ak;
                    ++less;
                } else if (ak > pivot2) { // Move a[k] to right part
                    while (a[great] > pivot2) {
                        if (great-- == k) {
                            break outer;
                        }
                    }
                    if (a[great] < pivot1) { // a[great] <= pivot2
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    } else { // pivot1 <= a[great] <= pivot2
                        a[k] = a[great];
                    }
                    /*
                     * Here and below we use "a[i] = b; i--;" instead
                     * of "a[i--] = b;" due to performance issue.
                     */
                    a[great] = ak;
                    --great;
                }
            }

            // Swap pivots into their final positions
            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
            a[right] = a[great + 1]; a[great + 1] = pivot2;

            // Sort left and right parts recursively, excluding known pivots
            sort(a, left, less - 2, leftmost);
            sort(a, great + 2, right, false);

            /*
             * If center part is too large (comprises > 4/7 of the array),
             * swap internal pivot values to ends.
             */
            if (less < e1 && e5 < great) {
                /*
                 * Skip elements, which are equal to pivot values.
                 */
                while (a[less] == pivot1) {
                    ++less;
                }

                while (a[great] == pivot2) {
                    --great;
                }

                /*
                 * Partitioning:
                 *
                 *   left part         center part                  right part
                 * +----------------------------------------------------------+
                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
                 * +----------------------------------------------------------+
                 *              ^                        ^       ^
                 *              |                        |       |
                 *             less                      k     great
                 *
                 * Invariants:
                 *
                 *              all in (*,  less) == pivot1
                 *     pivot1 < all in [less,  k)  < pivot2
                 *              all in (great, *) == pivot2
                 *
                 * Pointer k is the first index of ?-part.
                 */
                outer:
                for (int k = less - 1; ++k <= great; ) {
                    short ak = a[k];
                    if (ak == pivot1) { // Move a[k] to left part
                        a[k] = a[less];
                        a[less] = ak;
                        ++less;
                    } else if (ak == pivot2) { // Move a[k] to right part
                        while (a[great] == pivot2) {
                            if (great-- == k) {
                                break outer;
                            }
                        }
                        if (a[great] == pivot1) { // a[great] < pivot2
                            a[k] = a[less];
                            /*
                             * Even though a[great] equals to pivot1, the
                             * assignment a[less] = pivot1 may be incorrect,
                             * if a[great] and pivot1 are floating-point zeros
                             * of different signs. Therefore in float and
                             * double sorting methods we have to use more
                             * accurate assignment a[less] = a[great].
                             */
                            a[less] = pivot1;
                            ++less;
                        } else { // pivot1 < a[great] < pivot2
                            a[k] = a[great];
                        }
                        a[great] = ak;
                        --great;
                    }
                }
            }

            // Sort center part recursively
            sort(a, less, great, false);

        } else { // Partitioning with one pivot
            /*
             * Use the third of the five sorted elements as pivot.
             * This value is inexpensive approximation of the median.
             */
            short pivot = a[e3];

            /*
             * Partitioning degenerates to the traditional 3-way
             * (or "Dutch National Flag") schema:
             *
             *   left part    center part              right part
             * +-------------------------------------------------+
             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
             * +-------------------------------------------------+
             *              ^              ^        ^
             *              |              |        |
             *             less            k      great
             *
             * Invariants:
             *
             *   all in (left, less)   < pivot
             *   all in [less, k)     == pivot
             *   all in (great, right) > pivot
             *
             * Pointer k is the first index of ?-part.
             */
            for (int k = less; k <= great; ++k) {
                if (a[k] == pivot) {
                    continue;
                }
                short ak = a[k];
                if (ak < pivot) { // Move a[k] to left part
                    a[k] = a[less];
                    a[less] = ak;
                    ++less;
                } else { // a[k] > pivot - Move a[k] to right part
                    while (a[great] > pivot) {
                        --great;
                    }
                    if (a[great] < pivot) { // a[great] <= pivot
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    } else { // a[great] == pivot
                        /*
                         * Even though a[great] equals to pivot, the
                         * assignment a[k] = pivot may be incorrect,
                         * if a[great] and pivot are floating-point
                         * zeros of different signs. Therefore in float
                         * and double sorting methods we have to use
                         * more accurate assignment a[k] = a[great].
                         */
                        a[k] = pivot;
                    }
                    a[great] = ak;
                    --great;
                }
            }

            /*
             * Sort left and right parts recursively.
             * All elements from center part are equal
             * and, therefore, already sorted.
             */
            sort(a, left, less - 1, leftmost);
            sort(a, great + 1, right, false);
        }
    }

    /**
     * Sorts the specified array.
     *
     * @param a the array to be sorted
     */
    public static void sort(char[] a) {
        sort(a, 0, a.length - 1);
    }

    /**
     * Sorts the specified range of the array.
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     */
    public static void sort(char[] a, int left, int right) {
        // Use counting sort on large arrays
        if (right - left > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) {
            int[] count = new int[NUM_CHAR_VALUES];

            for (int i = left - 1; ++i <= right;
                count[a[i]]++
            );
            for (int i = NUM_CHAR_VALUES, k = right + 1; k > left; ) {
                while (count[--i] == 0);
                char value = (char) i;
                int s = count[i];

                do {
                    a[--k] = value;
                } while (--s > 0);
            }
        } else { // Use Dual-Pivot Quicksort on small arrays
            doSort(a, left, right);
        }
    }

    /** The number of distinct char values. */
    private static final int NUM_CHAR_VALUES = 1 << 16;

    /**
     * Sorts the specified range of the array.
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     */
    private static void doSort(char[] a, int left, int right) {
        // Use Quicksort on small arrays
        if (right - left < QUICKSORT_THRESHOLD) {
            sort(a, left, right, true);
            return;
        }

        /*
         * Index run[i] is the start of i-th run
         * (ascending or descending sequence).
         */
        int[] run = new int[MAX_RUN_COUNT + 1];
        int count = 0; run[0] = left;

        // Check if the array is nearly sorted
        for (int k = left; k < right; run[count] = k) {
            if (a[k] < a[k + 1]) { // ascending
                while (++k <= right && a[k - 1] <= a[k]);
            } else if (a[k] > a[k + 1]) { // descending
                while (++k <= right && a[k - 1] >= a[k]);
                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
                    char t = a[lo]; a[lo] = a[hi]; a[hi] = t;
                }
            } else { // equal
                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
                    if (--m == 0) {
                        sort(a, left, right, true);
                        return;
                    }
                }
            }

            /*
             * The array is not highly structured,
             * use Quicksort instead of merge sort.
             */
            if (++count == MAX_RUN_COUNT) {
                sort(a, left, right, true);
                return;
            }
        }

        // Check special cases
        if (run[count] == right++) { // The last run contains one element
            run[++count] = right;
        } else if (count == 1) { // The array is already sorted
            return;
        }

        /*
         * Create temporary array, which is used for merging.
         * Implementation note: variable "right" is increased by 1.
         */
        char[] b; byte odd = 0;
        for (int n = 1; (n <<= 1) < count; odd ^= 1);

        if (odd == 0) {
            b = a; a = new char[b.length];
            for (int i = left - 1; ++i < right; a[i] = b[i]);
        } else {
            b = new char[a.length];
        }

        // Merging
        for (int last; count > 1; count = last) {
            for (int k = (last = 0) + 2; k <= count; k += 2) {
                int hi = run[k], mi = run[k - 1];
                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
                    if (q >= hi || p < mi && a[p] <= a[q]) {
                        b[i] = a[p++];
                    } else {
                        b[i] = a[q++];
                    }
                }
                run[++last] = hi;
            }
            if ((count & 1) != 0) {
                for (int i = right, lo = run[count - 1]; --i >= lo;
                    b[i] = a[i]
                );
                run[++last] = right;
            }
            char[] t = a; a = b; b = t;
        }
    }

    /**
     * Sorts the specified range of the array by Dual-Pivot Quicksort.
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     * @param leftmost indicates if this part is the leftmost in the range
     */
    private static void sort(char[] a, int left, int right, boolean leftmost) {
        int length = right - left + 1;

        // Use insertion sort on tiny arrays
        if (length < INSERTION_SORT_THRESHOLD) {
            if (leftmost) {
                /*
                 * Traditional (without sentinel) insertion sort,
                 * optimized for server VM, is used in case of
                 * the leftmost part.
                 */
                for (int i = left, j = i; i < right; j = ++i) {
                    char ai = a[i + 1];
                    while (ai < a[j]) {
                        a[j + 1] = a[j];
                        if (j-- == left) {
                            break;
                        }
                    }
                    a[j + 1] = ai;
                }
            } else {
                /*
                 * Skip the longest ascending sequence.
                 */
                do {
                    if (left >= right) {
                        return;
                    }
                } while (a[++left] >= a[left - 1]);

                /*
                 * Every element from adjoining part plays the role
                 * of sentinel, therefore this allows us to avoid the
                 * left range check on each iteration. Moreover, we use
                 * the more optimized algorithm, so called pair insertion
                 * sort, which is faster (in the context of Quicksort)
                 * than traditional implementation of insertion sort.
                 */
                for (int k = left; ++left <= right; k = ++left) {
                    char a1 = a[k], a2 = a[left];

                    if (a1 < a2) {
                        a2 = a1; a1 = a[left];
                    }
                    while (a1 < a[--k]) {
                        a[k + 2] = a[k];
                    }
                    a[++k + 1] = a1;

                    while (a2 < a[--k]) {
                        a[k + 1] = a[k];
                    }
                    a[k + 1] = a2;
                }
                char last = a[right];

                while (last < a[--right]) {
                    a[right + 1] = a[right];
                }
                a[right + 1] = last;
            }
            return;
        }

        // Inexpensive approximation of length / 7
        int seventh = (length >> 3) + (length >> 6) + 1;

        /*
         * Sort five evenly spaced elements around (and including) the
         * center element in the range. These elements will be used for
         * pivot selection as described below. The choice for spacing
         * these elements was empirically determined to work well on
         * a wide variety of inputs.
         */
        int e3 = (left + right) >>> 1; // The midpoint
        int e2 = e3 - seventh;
        int e1 = e2 - seventh;
        int e4 = e3 + seventh;
        int e5 = e4 + seventh;

        // Sort these elements using insertion sort
        if (a[e2] < a[e1]) { char t = a[e2]; a[e2] = a[e1]; a[e1] = t; }

        if (a[e3] < a[e2]) { char t = a[e3]; a[e3] = a[e2]; a[e2] = t;
            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
        }
        if (a[e4] < a[e3]) { char t = a[e4]; a[e4] = a[e3]; a[e3] = t;
            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
            }
        }
        if (a[e5] < a[e4]) { char t = a[e5]; a[e5] = a[e4]; a[e4] = t;
            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
                }
            }
        }

        // Pointers
        int less  = left;  // The index of the first element of center part
        int great = right; // The index before the first element of right part

        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
            /*
             * Use the second and fourth of the five sorted elements as pivots.
             * These values are inexpensive approximations of the first and
             * second terciles of the array. Note that pivot1 <= pivot2.
             */
            char pivot1 = a[e2];
            char pivot2 = a[e4];

            /*
             * The first and the last elements to be sorted are moved to the
             * locations formerly occupied by the pivots. When partitioning
             * is complete, the pivots are swapped back into their final
             * positions, and excluded from subsequent sorting.
             */
            a[e2] = a[left];
            a[e4] = a[right];

            /*
             * Skip elements, which are less or greater than pivot values.
             */
            while (a[++less] < pivot1);
            while (a[--great] > pivot2);

            /*
             * Partitioning:
             *
             *   left part           center part                   right part
             * +--------------------------------------------------------------+
             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
             * +--------------------------------------------------------------+
             *               ^                          ^       ^
             *               |                          |       |
             *              less                        k     great
             *
             * Invariants:
             *
             *              all in (left, less)   < pivot1
             *    pivot1 <= all in [less, k)     <= pivot2
             *              all in (great, right) > pivot2
             *
             * Pointer k is the first index of ?-part.
             */
            outer:
            for (int k = less - 1; ++k <= great; ) {
                char ak = a[k];
                if (ak < pivot1) { // Move a[k] to left part
                    a[k] = a[less];
                    /*
                     * Here and below we use "a[i] = b; i++;" instead
                     * of "a[i++] = b;" due to performance issue.
                     */
                    a[less] = ak;
                    ++less;
                } else if (ak > pivot2) { // Move a[k] to right part
                    while (a[great] > pivot2) {
                        if (great-- == k) {
                            break outer;
                        }
                    }
                    if (a[great] < pivot1) { // a[great] <= pivot2
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    } else { // pivot1 <= a[great] <= pivot2
                        a[k] = a[great];
                    }
                    /*
                     * Here and below we use "a[i] = b; i--;" instead
                     * of "a[i--] = b;" due to performance issue.
                     */
                    a[great] = ak;
                    --great;
                }
            }

            // Swap pivots into their final positions
            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
            a[right] = a[great + 1]; a[great + 1] = pivot2;

            // Sort left and right parts recursively, excluding known pivots
            sort(a, left, less - 2, leftmost);
            sort(a, great + 2, right, false);

            /*
             * If center part is too large (comprises > 4/7 of the array),
             * swap internal pivot values to ends.
             */
            if (less < e1 && e5 < great) {
                /*
                 * Skip elements, which are equal to pivot values.
                 */
                while (a[less] == pivot1) {
                    ++less;
                }

                while (a[great] == pivot2) {
                    --great;
                }

                /*
                 * Partitioning:
                 *
                 *   left part         center part                  right part
                 * +----------------------------------------------------------+
                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
                 * +----------------------------------------------------------+
                 *              ^                        ^       ^
                 *              |                        |       |
                 *             less                      k     great
                 *
                 * Invariants:
                 *
                 *              all in (*,  less) == pivot1
                 *     pivot1 < all in [less,  k)  < pivot2
                 *              all in (great, *) == pivot2
                 *
                 * Pointer k is the first index of ?-part.
                 */
                outer:
                for (int k = less - 1; ++k <= great; ) {
                    char ak = a[k];
                    if (ak == pivot1) { // Move a[k] to left part
                        a[k] = a[less];
                        a[less] = ak;
                        ++less;
                    } else if (ak == pivot2) { // Move a[k] to right part
                        while (a[great] == pivot2) {
                            if (great-- == k) {
                                break outer;
                            }
                        }
                        if (a[great] == pivot1) { // a[great] < pivot2
                            a[k] = a[less];
                            /*
                             * Even though a[great] equals to pivot1, the
                             * assignment a[less] = pivot1 may be incorrect,
                             * if a[great] and pivot1 are floating-point zeros
                             * of different signs. Therefore in float and
                             * double sorting methods we have to use more
                             * accurate assignment a[less] = a[great].
                             */
                            a[less] = pivot1;
                            ++less;
                        } else { // pivot1 < a[great] < pivot2
                            a[k] = a[great];
                        }
                        a[great] = ak;
                        --great;
                    }
                }
            }

            // Sort center part recursively
            sort(a, less, great, false);

        } else { // Partitioning with one pivot
            /*
             * Use the third of the five sorted elements as pivot.
             * This value is inexpensive approximation of the median.
             */
            char pivot = a[e3];

            /*
             * Partitioning degenerates to the traditional 3-way
             * (or "Dutch National Flag") schema:
             *
             *   left part    center part              right part
             * +-------------------------------------------------+
             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
             * +-------------------------------------------------+
             *              ^              ^        ^
             *              |              |        |
             *             less            k      great
             *
             * Invariants:
             *
             *   all in (left, less)   < pivot
             *   all in [less, k)     == pivot
             *   all in (great, right) > pivot
             *
             * Pointer k is the first index of ?-part.
             */
            for (int k = less; k <= great; ++k) {
                if (a[k] == pivot) {
                    continue;
                }
                char ak = a[k];
                if (ak < pivot) { // Move a[k] to left part
                    a[k] = a[less];
                    a[less] = ak;
                    ++less;
                } else { // a[k] > pivot - Move a[k] to right part
                    while (a[great] > pivot) {
                        --great;
                    }
                    if (a[great] < pivot) { // a[great] <= pivot
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    } else { // a[great] == pivot
                        /*
                         * Even though a[great] equals to pivot, the
                         * assignment a[k] = pivot may be incorrect,
                         * if a[great] and pivot are floating-point
                         * zeros of different signs. Therefore in float
                         * and double sorting methods we have to use
                         * more accurate assignment a[k] = a[great].
                         */
                        a[k] = pivot;
                    }
                    a[great] = ak;
                    --great;
                }
            }

            /*
             * Sort left and right parts recursively.
             * All elements from center part are equal
             * and, therefore, already sorted.
             */
            sort(a, left, less - 1, leftmost);
            sort(a, great + 1, right, false);
        }
    }

    /** The number of distinct byte values. */
    private static final int NUM_BYTE_VALUES = 1 << 8;

    /**
     * Sorts the specified array.
     *
     * @param a the array to be sorted
     */
    public static void sort(byte[] a) {
        sort(a, 0, a.length - 1);
    }

    /**
     * Sorts the specified range of the array.
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     */
    public static void sort(byte[] a, int left, int right) {
        // Use counting sort on large arrays
        if (right - left > COUNTING_SORT_THRESHOLD_FOR_BYTE) {
            int[] count = new int[NUM_BYTE_VALUES];

            for (int i = left - 1; ++i <= right;
                count[a[i] - Byte.MIN_VALUE]++
            );
            for (int i = NUM_BYTE_VALUES, k = right + 1; k > left; ) {
                while (count[--i] == 0);
                byte value = (byte) (i + Byte.MIN_VALUE);
                int s = count[i];

                do {
                    a[--k] = value;
                } while (--s > 0);
            }
        } else { // Use insertion sort on small arrays
            for (int i = left, j = i; i < right; j = ++i) {
                byte ai = a[i + 1];
                while (ai < a[j]) {
                    a[j + 1] = a[j];
                    if (j-- == left) {
                        break;
                    }
                }
                a[j + 1] = ai;
            }
        }
    }

    /**
     * Sorts the specified array.
     *
     * @param a the array to be sorted
     */
    public static void sort(float[] a) {
        sort(a, 0, a.length - 1);
    }

    /**
     * Sorts the specified range of the array.
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     */
    public static void sort(float[] a, int left, int right) {
        /*
         * Phase 1: Move NaNs to the end of the array.
         */
        while (left <= right && Float.isNaN(a[right])) {
            --right;
        }
        for (int k = right; --k >= left; ) {
            float ak = a[k];
            if (ak != ak) { // a[k] is NaN
                a[k] = a[right];
                a[right] = ak;
                --right;
            }
        }

        /*
         * Phase 2: Sort everything except NaNs (which are already in place).
         */
        doSort(a, left, right);

        /*
         * Phase 3: Place negative zeros before positive zeros.
         */
        int hi = right;

        /*
         * Find the first zero, or first positive, or last negative element.
         */
        while (left < hi) {
            int middle = (left + hi) >>> 1;
            float middleValue = a[middle];

            if (middleValue < 0.0f) {
                left = middle + 1;
            } else {
                hi = middle;
            }
        }

        /*
         * Skip the last negative value (if any) or all leading negative zeros.
         */
        while (left <= right && Float.floatToRawIntBits(a[left]) < 0) {
            ++left;
        }

        /*
         * Move negative zeros to the beginning of the sub-range.
         *
         * Partitioning:
         *
         * +----------------------------------------------------+
         * |   < 0.0   |   -0.0   |   0.0   |   ?  ( >= 0.0 )   |
         * +----------------------------------------------------+
         *              ^          ^         ^
         *              |          |         |
         *             left        p         k
         *
         * Invariants:
         *
         *   all in (*,  left)  <  0.0
         *   all in [left,  p) == -0.0
         *   all in [p,     k) ==  0.0
         *   all in [k, right] >=  0.0
         *
         * Pointer k is the first index of ?-part.
         */
        for (int k = left, p = left - 1; ++k <= right; ) {
            float ak = a[k];
            if (ak != 0.0f) {
                break;
            }
            if (Float.floatToRawIntBits(ak) < 0) { // ak is -0.0f
                a[k] = 0.0f;
                a[++p] = -0.0f;
            }
        }
    }

    /**
     * Sorts the specified range of the array.
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     */
    private static void doSort(float[] a, int left, int right) {
        // Use Quicksort on small arrays
        if (right - left < QUICKSORT_THRESHOLD) {
            sort(a, left, right, true);
            return;
        }

        /*
         * Index run[i] is the start of i-th run
         * (ascending or descending sequence).
         */
        int[] run = new int[MAX_RUN_COUNT + 1];
        int count = 0; run[0] = left;

        // Check if the array is nearly sorted
        for (int k = left; k < right; run[count] = k) {
            if (a[k] < a[k + 1]) { // ascending
                while (++k <= right && a[k - 1] <= a[k]);
            } else if (a[k] > a[k + 1]) { // descending
                while (++k <= right && a[k - 1] >= a[k]);
                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
                    float t = a[lo]; a[lo] = a[hi]; a[hi] = t;
                }
            } else { // equal
                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
                    if (--m == 0) {
                        sort(a, left, right, true);
                        return;
                    }
                }
            }

            /*
             * The array is not highly structured,
             * use Quicksort instead of merge sort.
             */
            if (++count == MAX_RUN_COUNT) {
                sort(a, left, right, true);
                return;
            }
        }

        // Check special cases
        if (run[count] == right++) { // The last run contains one element
            run[++count] = right;
        } else if (count == 1) { // The array is already sorted
            return;
        }

        /*
         * Create temporary array, which is used for merging.
         * Implementation note: variable "right" is increased by 1.
         */
        float[] b; byte odd = 0;
        for (int n = 1; (n <<= 1) < count; odd ^= 1);

        if (odd == 0) {
            b = a; a = new float[b.length];
            for (int i = left - 1; ++i < right; a[i] = b[i]);
        } else {
            b = new float[a.length];
        }

        // Merging
        for (int last; count > 1; count = last) {
            for (int k = (last = 0) + 2; k <= count; k += 2) {
                int hi = run[k], mi = run[k - 1];
                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
                    if (q >= hi || p < mi && a[p] <= a[q]) {
                        b[i] = a[p++];
                    } else {
                        b[i] = a[q++];
                    }
                }
                run[++last] = hi;
            }
            if ((count & 1) != 0) {
                for (int i = right, lo = run[count - 1]; --i >= lo;
                    b[i] = a[i]
                );
                run[++last] = right;
            }
            float[] t = a; a = b; b = t;
        }
    }

    /**
     * Sorts the specified range of the array by Dual-Pivot Quicksort.
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     * @param leftmost indicates if this part is the leftmost in the range
     */
    private static void sort(float[] a, int left, int right, boolean leftmost) {
        int length = right - left + 1;

        // Use insertion sort on tiny arrays
        if (length < INSERTION_SORT_THRESHOLD) {
            if (leftmost) {
                /*
                 * Traditional (without sentinel) insertion sort,
                 * optimized for server VM, is used in case of
                 * the leftmost part.
                 */
                for (int i = left, j = i; i < right; j = ++i) {
                    float ai = a[i + 1];
                    while (ai < a[j]) {
                        a[j + 1] = a[j];
                        if (j-- == left) {
                            break;
                        }
                    }
                    a[j + 1] = ai;
                }
            } else {
                /*
                 * Skip the longest ascending sequence.
                 */
                do {
                    if (left >= right) {
                        return;
                    }
                } while (a[++left] >= a[left - 1]);

                /*
                 * Every element from adjoining part plays the role
                 * of sentinel, therefore this allows us to avoid the
                 * left range check on each iteration. Moreover, we use
                 * the more optimized algorithm, so called pair insertion
                 * sort, which is faster (in the context of Quicksort)
                 * than traditional implementation of insertion sort.
                 */
                for (int k = left; ++left <= right; k = ++left) {
                    float a1 = a[k], a2 = a[left];

                    if (a1 < a2) {
                        a2 = a1; a1 = a[left];
                    }
                    while (a1 < a[--k]) {
                        a[k + 2] = a[k];
                    }
                    a[++k + 1] = a1;

                    while (a2 < a[--k]) {
                        a[k + 1] = a[k];
                    }
                    a[k + 1] = a2;
                }
                float last = a[right];

                while (last < a[--right]) {
                    a[right + 1] = a[right];
                }
                a[right + 1] = last;
            }
            return;
        }

        // Inexpensive approximation of length / 7
        int seventh = (length >> 3) + (length >> 6) + 1;

        /*
         * Sort five evenly spaced elements around (and including) the
         * center element in the range. These elements will be used for
         * pivot selection as described below. The choice for spacing
         * these elements was empirically determined to work well on
         * a wide variety of inputs.
         */
        int e3 = (left + right) >>> 1; // The midpoint
        int e2 = e3 - seventh;
        int e1 = e2 - seventh;
        int e4 = e3 + seventh;
        int e5 = e4 + seventh;

        // Sort these elements using insertion sort
        if (a[e2] < a[e1]) { float t = a[e2]; a[e2] = a[e1]; a[e1] = t; }

        if (a[e3] < a[e2]) { float t = a[e3]; a[e3] = a[e2]; a[e2] = t;
            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
        }
        if (a[e4] < a[e3]) { float t = a[e4]; a[e4] = a[e3]; a[e3] = t;
            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
            }
        }
        if (a[e5] < a[e4]) { float t = a[e5]; a[e5] = a[e4]; a[e4] = t;
            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
                }
            }
        }

        // Pointers
        int less  = left;  // The index of the first element of center part
        int great = right; // The index before the first element of right part

        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
            /*
             * Use the second and fourth of the five sorted elements as pivots.
             * These values are inexpensive approximations of the first and
             * second terciles of the array. Note that pivot1 <= pivot2.
             */
            float pivot1 = a[e2];
            float pivot2 = a[e4];

            /*
             * The first and the last elements to be sorted are moved to the
             * locations formerly occupied by the pivots. When partitioning
             * is complete, the pivots are swapped back into their final
             * positions, and excluded from subsequent sorting.
             */
            a[e2] = a[left];
            a[e4] = a[right];

            /*
             * Skip elements, which are less or greater than pivot values.
             */
            while (a[++less] < pivot1);
            while (a[--great] > pivot2);

            /*
             * Partitioning:
             *
             *   left part           center part                   right part
             * +--------------------------------------------------------------+
             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
             * +--------------------------------------------------------------+
             *               ^                          ^       ^
             *               |                          |       |
             *              less                        k     great
             *
             * Invariants:
             *
             *              all in (left, less)   < pivot1
             *    pivot1 <= all in [less, k)     <= pivot2
             *              all in (great, right) > pivot2
             *
             * Pointer k is the first index of ?-part.
             */
            outer:
            for (int k = less - 1; ++k <= great; ) {
                float ak = a[k];
                if (ak < pivot1) { // Move a[k] to left part
                    a[k] = a[less];
                    /*
                     * Here and below we use "a[i] = b; i++;" instead
                     * of "a[i++] = b;" due to performance issue.
                     */
                    a[less] = ak;
                    ++less;
                } else if (ak > pivot2) { // Move a[k] to right part
                    while (a[great] > pivot2) {
                        if (great-- == k) {
                            break outer;
                        }
                    }
                    if (a[great] < pivot1) { // a[great] <= pivot2
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    } else { // pivot1 <= a[great] <= pivot2
                        a[k] = a[great];
                    }
                    /*
                     * Here and below we use "a[i] = b; i--;" instead
                     * of "a[i--] = b;" due to performance issue.
                     */
                    a[great] = ak;
                    --great;
                }
            }

            // Swap pivots into their final positions
            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
            a[right] = a[great + 1]; a[great + 1] = pivot2;

            // Sort left and right parts recursively, excluding known pivots
            sort(a, left, less - 2, leftmost);
            sort(a, great + 2, right, false);

            /*
             * If center part is too large (comprises > 4/7 of the array),
             * swap internal pivot values to ends.
             */
            if (less < e1 && e5 < great) {
                /*
                 * Skip elements, which are equal to pivot values.
                 */
                while (a[less] == pivot1) {
                    ++less;
                }

                while (a[great] == pivot2) {
                    --great;
                }

                /*
                 * Partitioning:
                 *
                 *   left part         center part                  right part
                 * +----------------------------------------------------------+
                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
                 * +----------------------------------------------------------+
                 *              ^                        ^       ^
                 *              |                        |       |
                 *             less                      k     great
                 *
                 * Invariants:
                 *
                 *              all in (*,  less) == pivot1
                 *     pivot1 < all in [less,  k)  < pivot2
                 *              all in (great, *) == pivot2
                 *
                 * Pointer k is the first index of ?-part.
                 */
                outer:
                for (int k = less - 1; ++k <= great; ) {
                    float ak = a[k];
                    if (ak == pivot1) { // Move a[k] to left part
                        a[k] = a[less];
                        a[less] = ak;
                        ++less;
                    } else if (ak == pivot2) { // Move a[k] to right part
                        while (a[great] == pivot2) {
                            if (great-- == k) {
                                break outer;
                            }
                        }
                        if (a[great] == pivot1) { // a[great] < pivot2
                            a[k] = a[less];
                            /*
                             * Even though a[great] equals to pivot1, the
                             * assignment a[less] = pivot1 may be incorrect,
                             * if a[great] and pivot1 are floating-point zeros
                             * of different signs. Therefore in float and
                             * double sorting methods we have to use more
                             * accurate assignment a[less] = a[great].
                             */
                            a[less] = a[great];
                            ++less;
                        } else { // pivot1 < a[great] < pivot2
                            a[k] = a[great];
                        }
                        a[great] = ak;
                        --great;
                    }
                }
            }

            // Sort center part recursively
            sort(a, less, great, false);

        } else { // Partitioning with one pivot
            /*
             * Use the third of the five sorted elements as pivot.
             * This value is inexpensive approximation of the median.
             */
            float pivot = a[e3];

            /*
             * Partitioning degenerates to the traditional 3-way
             * (or "Dutch National Flag") schema:
             *
             *   left part    center part              right part
             * +-------------------------------------------------+
             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
             * +-------------------------------------------------+
             *              ^              ^        ^
             *              |              |        |
             *             less            k      great
             *
             * Invariants:
             *
             *   all in (left, less)   < pivot
             *   all in [less, k)     == pivot
             *   all in (great, right) > pivot
             *
             * Pointer k is the first index of ?-part.
             */
            for (int k = less; k <= great; ++k) {
                if (a[k] == pivot) {
                    continue;
                }
                float ak = a[k];
                if (ak < pivot) { // Move a[k] to left part
                    a[k] = a[less];
                    a[less] = ak;
                    ++less;
                } else { // a[k] > pivot - Move a[k] to right part
                    while (a[great] > pivot) {
                        --great;
                    }
                    if (a[great] < pivot) { // a[great] <= pivot
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    } else { // a[great] == pivot
                        /*
                         * Even though a[great] equals to pivot, the
                         * assignment a[k] = pivot may be incorrect,
                         * if a[great] and pivot are floating-point
                         * zeros of different signs. Therefore in float
                         * and double sorting methods we have to use
                         * more accurate assignment a[k] = a[great].
                         */
                        a[k] = a[great];
                    }
                    a[great] = ak;
                    --great;
                }
            }

            /*
             * Sort left and right parts recursively.
             * All elements from center part are equal
             * and, therefore, already sorted.
             */
            sort(a, left, less - 1, leftmost);
            sort(a, great + 1, right, false);
        }
    }

    /**
     * Sorts the specified array.
     *
     * @param a the array to be sorted
     */
    public static void sort(double[] a) {
        sort(a, 0, a.length - 1);
    }

    /**
     * Sorts the specified range of the array.
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     */
    public static void sort(double[] a, int left, int right) {
        /*
         * Phase 1: Move NaNs to the end of the array.
         */
        while (left <= right && Double.isNaN(a[right])) {
            --right;
        }
        for (int k = right; --k >= left; ) {
            double ak = a[k];
            if (ak != ak) { // a[k] is NaN
                a[k] = a[right];
                a[right] = ak;
                --right;
            }
        }

        /*
         * Phase 2: Sort everything except NaNs (which are already in place).
         */
        doSort(a, left, right);

        /*
         * Phase 3: Place negative zeros before positive zeros.
         */
        int hi = right;

        /*
         * Find the first zero, or first positive, or last negative element.
         */
        while (left < hi) {
            int middle = (left + hi) >>> 1;
            double middleValue = a[middle];

            if (middleValue < 0.0d) {
                left = middle + 1;
            } else {
                hi = middle;
            }
        }

        /*
         * Skip the last negative value (if any) or all leading negative zeros.
         */
        while (left <= right && Double.doubleToRawLongBits(a[left]) < 0) {
            ++left;
        }

        /*
         * Move negative zeros to the beginning of the sub-range.
         *
         * Partitioning:
         *
         * +----------------------------------------------------+
         * |   < 0.0   |   -0.0   |   0.0   |   ?  ( >= 0.0 )   |
         * +----------------------------------------------------+
         *              ^          ^         ^
         *              |          |         |
         *             left        p         k
         *
         * Invariants:
         *
         *   all in (*,  left)  <  0.0
         *   all in [left,  p) == -0.0
         *   all in [p,     k) ==  0.0
         *   all in [k, right] >=  0.0
         *
         * Pointer k is the first index of ?-part.
         */
        for (int k = left, p = left - 1; ++k <= right; ) {
            double ak = a[k];
            if (ak != 0.0d) {
                break;
            }
            if (Double.doubleToRawLongBits(ak) < 0) { // ak is -0.0d
                a[k] = 0.0d;
                a[++p] = -0.0d;
            }
        }
    }

    /**
     * Sorts the specified range of the array.
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     */
    private static void doSort(double[] a, int left, int right) {
        // Use Quicksort on small arrays
        if (right - left < QUICKSORT_THRESHOLD) {
            sort(a, left, right, true);
            return;
        }

        /*
         * Index run[i] is the start of i-th run
         * (ascending or descending sequence).
         */
        int[] run = new int[MAX_RUN_COUNT + 1];
        int count = 0; run[0] = left;

        // Check if the array is nearly sorted
        for (int k = left; k < right; run[count] = k) {
            if (a[k] < a[k + 1]) { // ascending
                while (++k <= right && a[k - 1] <= a[k]);
            } else if (a[k] > a[k + 1]) { // descending
                while (++k <= right && a[k - 1] >= a[k]);
                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
                    double t = a[lo]; a[lo] = a[hi]; a[hi] = t;
                }
            } else { // equal
                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
                    if (--m == 0) {
                        sort(a, left, right, true);
                        return;
                    }
                }
            }

            /*
             * The array is not highly structured,
             * use Quicksort instead of merge sort.
             */
            if (++count == MAX_RUN_COUNT) {
                sort(a, left, right, true);
                return;
            }
        }

        // Check special cases
        if (run[count] == right++) { // The last run contains one element
            run[++count] = right;
        } else if (count == 1) { // The array is already sorted
            return;
        }

        /*
         * Create temporary array, which is used for merging.
         * Implementation note: variable "right" is increased by 1.
         */
        double[] b; byte odd = 0;
        for (int n = 1; (n <<= 1) < count; odd ^= 1);

        if (odd == 0) {
            b = a; a = new double[b.length];
            for (int i = left - 1; ++i < right; a[i] = b[i]);
        } else {
            b = new double[a.length];
        }

        // Merging
        for (int last; count > 1; count = last) {
            for (int k = (last = 0) + 2; k <= count; k += 2) {
                int hi = run[k], mi = run[k - 1];
                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
                    if (q >= hi || p < mi && a[p] <= a[q]) {
                        b[i] = a[p++];
                    } else {
                        b[i] = a[q++];
                    }
                }
                run[++last] = hi;
            }
            if ((count & 1) != 0) {
                for (int i = right, lo = run[count - 1]; --i >= lo;
                    b[i] = a[i]
                );
                run[++last] = right;
            }
            double[] t = a; a = b; b = t;
        }
    }

    /**
     * Sorts the specified range of the array by Dual-Pivot Quicksort.
     *
     * @param a the array to be sorted
     * @param left the index of the first element, inclusive, to be sorted
     * @param right the index of the last element, inclusive, to be sorted
     * @param leftmost indicates if this part is the leftmost in the range
     */
    private static void sort(double[] a, int left, int right, boolean leftmost) {
        int length = right - left + 1;

        // Use insertion sort on tiny arrays
        if (length < INSERTION_SORT_THRESHOLD) {
            if (leftmost) {
                /*
                 * Traditional (without sentinel) insertion sort,
                 * optimized for server VM, is used in case of
                 * the leftmost part.
                 */
                for (int i = left, j = i; i < right; j = ++i) {
                    double ai = a[i + 1];
                    while (ai < a[j]) {
                        a[j + 1] = a[j];
                        if (j-- == left) {
                            break;
                        }
                    }
                    a[j + 1] = ai;
                }
            } else {
                /*
                 * Skip the longest ascending sequence.
                 */
                do {
                    if (left >= right) {
                        return;
                    }
                } while (a[++left] >= a[left - 1]);

                /*
                 * Every element from adjoining part plays the role
                 * of sentinel, therefore this allows us to avoid the
                 * left range check on each iteration. Moreover, we use
                 * the more optimized algorithm, so called pair insertion
                 * sort, which is faster (in the context of Quicksort)
                 * than traditional implementation of insertion sort.
                 */
                for (int k = left; ++left <= right; k = ++left) {
                    double a1 = a[k], a2 = a[left];

                    if (a1 < a2) {
                        a2 = a1; a1 = a[left];
                    }
                    while (a1 < a[--k]) {
                        a[k + 2] = a[k];
                    }
                    a[++k + 1] = a1;

                    while (a2 < a[--k]) {
                        a[k + 1] = a[k];
                    }
                    a[k + 1] = a2;
                }
                double last = a[right];

                while (last < a[--right]) {
                    a[right + 1] = a[right];
                }
                a[right + 1] = last;
            }
            return;
        }

        // Inexpensive approximation of length / 7
        int seventh = (length >> 3) + (length >> 6) + 1;

        /*
         * Sort five evenly spaced elements around (and including) the
         * center element in the range. These elements will be used for
         * pivot selection as described below. The choice for spacing
         * these elements was empirically determined to work well on
         * a wide variety of inputs.
         */
        int e3 = (left + right) >>> 1; // The midpoint
        int e2 = e3 - seventh;
        int e1 = e2 - seventh;
        int e4 = e3 + seventh;
        int e5 = e4 + seventh;

        // Sort these elements using insertion sort
        if (a[e2] < a[e1]) { double t = a[e2]; a[e2] = a[e1]; a[e1] = t; }

        if (a[e3] < a[e2]) { double t = a[e3]; a[e3] = a[e2]; a[e2] = t;
            if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
        }
        if (a[e4] < a[e3]) { double t = a[e4]; a[e4] = a[e3]; a[e3] = t;
            if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
            }
        }
        if (a[e5] < a[e4]) { double t = a[e5]; a[e5] = a[e4]; a[e4] = t;
            if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
                if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
                    if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
                }
            }
        }

        // Pointers
        int less  = left;  // The index of the first element of center part
        int great = right; // The index before the first element of right part

        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
            /*
             * Use the second and fourth of the five sorted elements as pivots.
             * These values are inexpensive approximations of the first and
             * second terciles of the array. Note that pivot1 <= pivot2.
             */
            double pivot1 = a[e2];
            double pivot2 = a[e4];

            /*
             * The first and the last elements to be sorted are moved to the
             * locations formerly occupied by the pivots. When partitioning
             * is complete, the pivots are swapped back into their final
             * positions, and excluded from subsequent sorting.
             */
            a[e2] = a[left];
            a[e4] = a[right];

            /*
             * Skip elements, which are less or greater than pivot values.
             */
            while (a[++less] < pivot1);
            while (a[--great] > pivot2);

            /*
             * Partitioning:
             *
             *   left part           center part                   right part
             * +--------------------------------------------------------------+
             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
             * +--------------------------------------------------------------+
             *               ^                          ^       ^
             *               |                          |       |
             *              less                        k     great
             *
             * Invariants:
             *
             *              all in (left, less)   < pivot1
             *    pivot1 <= all in [less, k)     <= pivot2
             *              all in (great, right) > pivot2
             *
             * Pointer k is the first index of ?-part.
             */
            outer:
            for (int k = less - 1; ++k <= great; ) {
                double ak = a[k];
                if (ak < pivot1) { // Move a[k] to left part
                    a[k] = a[less];
                    /*
                     * Here and below we use "a[i] = b; i++;" instead
                     * of "a[i++] = b;" due to performance issue.
                     */
                    a[less] = ak;
                    ++less;
                } else if (ak > pivot2) { // Move a[k] to right part
                    while (a[great] > pivot2) {
                        if (great-- == k) {
                            break outer;
                        }
                    }
                    if (a[great] < pivot1) { // a[great] <= pivot2
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    } else { // pivot1 <= a[great] <= pivot2
                        a[k] = a[great];
                    }
                    /*
                     * Here and below we use "a[i] = b; i--;" instead
                     * of "a[i--] = b;" due to performance issue.
                     */
                    a[great] = ak;
                    --great;
                }
            }

            // Swap pivots into their final positions
            a[left]  = a[less  - 1]; a[less  - 1] = pivot1;
            a[right] = a[great + 1]; a[great + 1] = pivot2;

            // Sort left and right parts recursively, excluding known pivots
            sort(a, left, less - 2, leftmost);
            sort(a, great + 2, right, false);

            /*
             * If center part is too large (comprises > 4/7 of the array),
             * swap internal pivot values to ends.
             */
            if (less < e1 && e5 < great) {
                /*
                 * Skip elements, which are equal to pivot values.
                 */
                while (a[less] == pivot1) {
                    ++less;
                }

                while (a[great] == pivot2) {
                    --great;
                }

                /*
                 * Partitioning:
                 *
                 *   left part         center part                  right part
                 * +----------------------------------------------------------+
                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
                 * +----------------------------------------------------------+
                 *              ^                        ^       ^
                 *              |                        |       |
                 *             less                      k     great
                 *
                 * Invariants:
                 *
                 *              all in (*,  less) == pivot1
                 *     pivot1 < all in [less,  k)  < pivot2
                 *              all in (great, *) == pivot2
                 *
                 * Pointer k is the first index of ?-part.
                 */
                outer:
                for (int k = less - 1; ++k <= great; ) {
                    double ak = a[k];
                    if (ak == pivot1) { // Move a[k] to left part
                        a[k] = a[less];
                        a[less] = ak;
                        ++less;
                    } else if (ak == pivot2) { // Move a[k] to right part
                        while (a[great] == pivot2) {
                            if (great-- == k) {
                                break outer;
                            }
                        }
                        if (a[great] == pivot1) { // a[great] < pivot2
                            a[k] = a[less];
                            /*
                             * Even though a[great] equals to pivot1, the
                             * assignment a[less] = pivot1 may be incorrect,
                             * if a[great] and pivot1 are floating-point zeros
                             * of different signs. Therefore in float and
                             * double sorting methods we have to use more
                             * accurate assignment a[less] = a[great].
                             */
                            a[less] = a[great];
                            ++less;
                        } else { // pivot1 < a[great] < pivot2
                            a[k] = a[great];
                        }
                        a[great] = ak;
                        --great;
                    }
                }
            }

            // Sort center part recursively
            sort(a, less, great, false);

        } else { // Partitioning with one pivot
            /*
             * Use the third of the five sorted elements as pivot.
             * This value is inexpensive approximation of the median.
             */
            double pivot = a[e3];

            /*
             * Partitioning degenerates to the traditional 3-way
             * (or "Dutch National Flag") schema:
             *
             *   left part    center part              right part
             * +-------------------------------------------------+
             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
             * +-------------------------------------------------+
             *              ^              ^        ^
             *              |              |        |
             *             less            k      great
             *
             * Invariants:
             *
             *   all in (left, less)   < pivot
             *   all in [less, k)     == pivot
             *   all in (great, right) > pivot
             *
             * Pointer k is the first index of ?-part.
             */
            for (int k = less; k <= great; ++k) {
                if (a[k] == pivot) {
                    continue;
                }
                double ak = a[k];
                if (ak < pivot) { // Move a[k] to left part
                    a[k] = a[less];
                    a[less] = ak;
                    ++less;
                } else { // a[k] > pivot - Move a[k] to right part
                    while (a[great] > pivot) {
                        --great;
                    }
                    if (a[great] < pivot) { // a[great] <= pivot
                        a[k] = a[less];
                        a[less] = a[great];
                        ++less;
                    } else { // a[great] == pivot
                        /*
                         * Even though a[great] equals to pivot, the
                         * assignment a[k] = pivot may be incorrect,
                         * if a[great] and pivot are floating-point
                         * zeros of different signs. Therefore in float
                         * and double sorting methods we have to use
                         * more accurate assignment a[k] = a[great].
                         */
                        a[k] = a[great];
                    }
                    a[great] = ak;
                    --great;
                }
            }

            /*
             * Sort left and right parts recursively.
             * All elements from center part are equal
             * and, therefore, already sorted.
             */
            sort(a, left, less - 1, leftmost);
            sort(a, great + 1, right, false);
        }
    }
}


转载于:https://www.cnblogs.com/zhwj184/archive/2012/11/02/3027456.html

最后

以上就是激动发箍为你收集整理的java 中提供的默认的快速排序的实现的全部内容,希望文章能够帮你解决java 中提供的默认的快速排序的实现所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(63)

评论列表共有 0 条评论

立即
投稿
返回
顶部