我是靠谱客的博主 执着钢铁侠,最近开发中收集的这篇文章主要介绍【TensorFlow】TensorFlow函数精讲之tf.nn.conv2d(),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

博客之星评选,谢谢您的支持!微信、qq五连击投票(无需关注、无需登录)

人工智能博士(投票链接):http://m234140.nofollow.ax.mvote.cn/opage/4fddfa73-b1fa-b047-f666-98f84c9c25c4.html

tf.nn.conv2d是TensorFlow里面实现卷积的函数,是搭建卷积神经网络比较核心的一个方法。

函数格式:

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu =  Noen, name = None)

参数说明:

第一个参数input:指需要做卷积的输入图像,它要求是一个4维的Tensor,类型为float32和float64之一,shape为[batch, in_height, in_width, in_channels]:

  • batch:训练时一个batch的图片数量
  • in_height:输入图像的高度
  • in_width:输入图像的宽度
  • in_channels:输入图像的通道数,灰度图像则为1,彩色图像则为3

第二个参数filter:CNN卷积网络中的卷积核,要求是一个Tensor,类型和input类型相同,shape为[filter_height, filter_width, in_channels, out_channels]:

  • filter_height:卷积核的高度
  • filter_width:卷积核的宽度
  • in_channels:图像的通道数,input的in_channels相同
  • out_channels:卷积核的个数

第三个参数strides:不同维度上的步长,是一个长度为4的一维向量,[ 1, strides, strides, 1],第一维和最后一维的数字要求必须是1。因为卷积层的步长只对矩阵的长和宽有效。

第四个参数padding:string类型,表示卷积的形式,是否考虑边界,值为“SAME”和“VALID”"SAME"是考虑边界,不足的时候用填充周围"VALID"则不考虑边界

第五个参数use_cudnn_on_gpu: bool类型,是否使用cudnn加速,默认为true。

该函数返回的就是我们常说的feature map,shape仍然是[batch, height, width, channels]这种形式。


下边通过例子来说明tf.nn.conv2d()函数的用法:

case1:输入是1张 3*3 大小的图片,图像通道数是5,卷积核是 1*1 大小,数量是1 ,步长是[1,1,1,1],最后得到一个 3*3 的feature map。1张图最后输出就是一个 shape为[1,3,3,1] 的tensor。

#!/usr/bin/env python
# -*- coding:utf-8 -*-

import tensorflow as tf

Input = tf.Variable(tf.random_normal([1, 3, 3, 5]))
Filter = tf.Variable(tf.random_normal([1, 1, 5, 1]))

conv1 = tf.nn.conv2d(Input, Filter, strides=[1, 1, 1, 1], padding='VALID')

with tf.Session() as sess:
    # 初始化变量
    op_init = tf.global_variables_initializer()
    sess.run(op_init)

    print(sess.run(conv1))

运行结果:


case2:输入是1张 3*3 大小的图片,图像通道数是5,卷积核是 2*2大小,数量是1 ,步长是[1,1,1,1],padding 设置为“VALID”,最后得到一个 2*2的feature map。1张图最后输出就是一个 shape为[1,2,2,1] 的tensor。

#!/usr/bin/env python
# -*- coding:utf-8 -*-

import tensorflow as tf

Input = tf.Variable(tf.random_normal([1, 3, 3, 5]))
Filter = tf.Variable(tf.random_normal([2, 2, 5, 1]))

conv2 = tf.nn.conv2d(Input, Filter, strides=[1, 1, 1, 1], padding='VALID')

with tf.Session() as sess:
    # 初始化变量
    op_init = tf.global_variables_initializer()
    sess.run(op_init)

    print(sess.run(conv2))

运行结果:


case3:将case2例子的padding值改为“SAME”,即考虑边界。(输入是1张 3*3 大小的图片,图像通道数是5,卷积核是 2*2大小,数量是1 ,步长是[1,1,1,1],padding 设置为“SAME”,最后得到一个 3*3的feature map。1张图最后输出就是一个 shape为[1,3,3,1] 的tensor。)

#!/usr/bin/env python
# -*- coding:utf-8 -*-

import tensorflow as tf

Input = tf.Variable(tf.random_normal([1, 3, 3, 5]))
Filter = tf.Variable(tf.random_normal([2, 2, 5, 1]))

conv3= tf.nn.conv2d(Input, Filter, strides=[1, 1, 1, 1], padding='SAME')

with tf.Session() as sess:
    # 初始化变量
    op_init = tf.global_variables_initializer()
    sess.run(op_init)

    print(sess.run(conv3))

运行结果为:


case4:输入是2张 3*3 大小的图片,图像通道数是5,卷积核是 2*2大小,数量是1,步长是[1,1,1,1],padding 设置为“SAME”,最后得到2个 3*3的feature map。1张图最后输出就是一个 shape为[2,3,3,1] 的tensor。

#!/usr/bin/env python
# -*- coding:utf-8 -*-

import tensorflow as tf

Input = tf.Variable(tf.random_normal([2, 3, 3, 5]))
Filter = tf.Variable(tf.random_normal([2, 2, 5, 1]))

conv4 = tf.nn.conv2d(Input, Filter, strides=[1, 1, 1, 1], padding='SAME')

with tf.Session() as sess:
    # 初始化变量
    op_init = tf.global_variables_initializer()
    sess.run(op_init)

    print(sess.run(conv4))

运行结果:


case4:输入是4张 3*3 大小的图片,图像通道数是5,卷积核是 2*2大小,数量是4,步长是[1,1,1,1],padding 设置为“SAME”,最后每张图片得到4个 3*3的feature map。1张图最后输出就是一个 shape为[4,3,3,4] 的tensor。

#!/usr/bin/env python
# -*- coding:utf-8 -*-

import tensorflow as tf

Input = tf.Variable(tf.random_normal([4, 3, 3, 5]))
Filter = tf.Variable(tf.random_normal([2, 2, 5, 4]))

conv5 = tf.nn.conv2d(Input, Filter, strides=[1, 1, 1, 1], padding='SAME')

with tf.Session() as sess:
    # 初始化变量
    op_init = tf.global_variables_initializer()
    sess.run(op_init)

    print(sess.run(conv5))

运行结果为:

[[[[  4.1313605   -4.5319715    4.3040133   -0.13911057]
   [-10.3389225   -2.2463617   -3.033617     2.0877244 ]
   [ -2.3154557    5.4515543   -4.647153    -3.0869713 ]]

  [[  3.0420232   -0.87613493   4.6381464    0.90558195]
   [  3.7932742   -2.4520369   -0.7195463    4.9921722 ]
   [  1.5384624    0.11533099  -2.408429     5.3733883 ]]

  [[  0.45401835  -2.7483764    0.07065094   0.443908  ]
   [ -6.8117185    2.2884533   -5.3677235    1.5834118 ]
   [ -1.2048031    1.848783    -1.6733127   -1.7782905 ]]]


 [[[  0.5970616    0.77205956  -3.116805    -2.0577238 ]
   [ -1.9527029    0.34587446  -5.7365794   -7.39325   ]
   [  2.9361765   -3.504585     4.057106     1.7304868 ]]

  [[  7.262891    -2.492215     4.7126684    1.7249267 ]
   [ -7.4239445    2.9972248    4.2400084    0.9729483 ]
   [  1.9529393    3.4738922    0.24985534  -2.922786  ]]

  [[ -0.3828507    0.49657637   0.47466695   0.8126482 ]
   [ -0.3671472   -0.67494106   0.46129555  -0.9638461 ]
   [  1.6664319    0.885748     0.31974202  -1.9972321 ]]]


 [[[ -1.7906806   -1.0376648    1.7166338   -1.0403266 ]
   [  2.5069232    4.0962963   -1.6884253   -0.23492575]
   [ -0.3881849   -2.4799151    3.8491216   -2.5564618 ]]

  [[ -3.5605621    1.6819414   -4.8645535   -1.9251393 ]
   [ -1.8077193   -5.6664057    4.750779     1.2238139 ]
   [  2.346087    -6.2254734    5.1787786    4.3055882 ]]

  [[  0.21012396  -2.145918     1.358845    -0.25860584]
   [ -2.3559752    4.263964    -0.51586103  -6.9163604 ]
   [  5.504827     4.0707703    0.11547554  -7.818963  ]]]


 [[[  3.716207     0.63655686  -1.2434999   -4.472955  ]
   [  2.067041     2.0510454    4.2357826   -4.159449  ]
   [  0.63638914   1.9863756    0.42491168   0.13413942]]

  [[  2.5624473    5.041215     3.689196    -1.1119944 ]
   [  4.470556     6.4554853   -7.154124     3.396954  ]
   [ -4.9033055   -4.636659     3.7072423   -0.6310719 ]]

  [[ -0.92771626   5.868825    -3.1153893   -3.9012384 ]
   [  3.4494157   -2.7036839    5.6135087    3.6358144 ]
   [  1.0283424   -4.246024     0.7325883    0.4899721 ]]]]

 

最后

以上就是执着钢铁侠为你收集整理的【TensorFlow】TensorFlow函数精讲之tf.nn.conv2d()的全部内容,希望文章能够帮你解决【TensorFlow】TensorFlow函数精讲之tf.nn.conv2d()所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(58)

评论列表共有 0 条评论

立即
投稿
返回
顶部