我是靠谱客的博主 幸福冷风,最近开发中收集的这篇文章主要介绍torch.flatten(),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

参考

torch.flatten() - 云+社区 - 腾讯云

先看函数参数:

torch.flatten(input, start_dim=0, end_dim=-1)

input: 一个 tensor,即要被“推平”的 tensor。

start_dim: “推平”的起始维度。

end_dim: “推平”的结束维度。

首先如果按照 start_dim 和 end_dim 的默认值,那么这个函数会把 input 推平成一个 shape 为 [n][n] 的tensor,其中 nn 即 input 中元素个数。

如果我们要自己设定起始维度和结束维度呢?

我们要先来看一下 tensor 中的 shape 是怎么样的:

t = torch.tensor([[[1, 2, 2, 1],
[3, 4, 4, 3],
[1, 2, 3, 4]],
[[5, 6, 6, 5],
[7, 8, 8, 7],
[5, 6, 7, 8]]])
print(t, t.shape)
运行结果:
tensor([[[1, 2, 2, 1],
[3, 4, 4, 3],
[1, 2, 3, 4]],
[[5, 6, 6, 5],
[7, 8, 8, 7],
[5, 6, 7, 8]]])
torch.Size([2, 3, 4])

我们可以看到,最外层的方括号内含两个元素,因此 shape 的第一个值是 2;类似地,第二层方括号里面含三个元素,shape 的第二个值就是 3;最内层方括号里含四个元素,shape 的第二个值就是 4。

示例代码:

x = torch.flatten(t, start_dim=1)
print(x, x.shape)
y = torch.flatten(t, start_dim=0, end_dim=1)
print(y, y.shape)
运行结果:
tensor([[1, 2, 2, 1, 3, 4, 4, 3, 1, 2, 3, 4],
[5, 6, 6, 5, 7, 8, 8, 7, 5, 6, 7, 8]])
torch.Size([2, 12])
tensor([[1, 2, 2, 1],
[3, 4, 4, 3],
[1, 2, 3, 4],
[5, 6, 6, 5],
[7, 8, 8, 7],
[5, 6, 7, 8]])
torch.Size([6, 4])

可以看到,当 start_dim = 11 而 end_dim = −1−1 时,它把第 11 个维度到最后一个维度全部推平合并了。而当 start_dim = 00 而 end_dim = 11 时,它把第 00 个维度到第 11 个维度全部推平合并了。pytorch中的 torch.nn.Flatten 类和 torch.Tensor.flatten 方法其实都是基于上面的 torch.flatten 函数实现的。

最后

以上就是幸福冷风为你收集整理的torch.flatten()的全部内容,希望文章能够帮你解决torch.flatten()所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(73)

评论列表共有 0 条评论

立即
投稿
返回
顶部