我是靠谱客的博主 害羞往事,最近开发中收集的这篇文章主要介绍数据面试题:正态分布、偏态分布及峰态分布,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

面试题1:(答案)右偏分布

面试题2:(答案)C,正态分布的偏度为0,峰度为3

面试题3:(答案)C

面试题4:(答案)AC

 

相关系数

:考察两个事物(在数据里我们称之为变量)之间的相关程度。

 

如果有两个变量:X、Y,最终计算出的相关系数的含义可以有如下理解:

(1)、当相关系数为0时,X和Y两变量无关系。

(2)、当X的值增大(减小),Y值增大(减小),两个变量为正相关,相关系数在0.00与1.00之间。

(3)、当X的值增大(减小),Y值减小(增大),两个变量为负相关,相关系数在-1.00与0.00之间。

 

相关系数的绝对值越大,相关性越强,相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱。

通常情况下通过以下取值范围判断变量的相关强度:
相关系数     0.8-1.0     极强相关
                 0.6-0.8     强相关
                 0.4-0.6     中等程度相关
                 0.2-0.4     弱相关
                 0.0-0.2     极弱相关或无相关

 

ARMA相关资料

 

 

正偏态与负偏态

在正偏态分布中,为什么平均数大于中位数大于众数?在负偏态分布中,为什么众数大于中位数大于平均数?

偏度系数(Skewness)用来度量分布是否对称。正态分布左右是对称的,偏度系数为0。较大的正值表明该分布具有右侧较长尾部。较大的负值表明有左侧较长尾部。偏度系数与其标准误的比值同样可以用来检验正态性。

峰度系数的概念:峰度系数是用来反映频数分布曲线顶端尖峭或扁平程度的指标。有时两组数据的算术平均数、标准差和偏态系数都相同,但他们分布曲线顶端的高耸程度却不同。

峰度系数(Kurtosis)用来度量数据在中心聚集程度。

在正态分布情况下,峰度系数值是3(但是SPSS等软件中将正态分布峰度值定为0,是因为已经减去3,这样比较起来方便)。

>3的峰度系数说明观察量更集中,有比正态分布更短的尾部;<3的峰度系数说明观测量不那么集中,有比正态分布更长的尾部,类似于矩形的均匀分布。

峰度系数的标准误用来判断分布的正态性。峰度系数与其标准误的比值用来检验正态性。如果该比值绝对值大于2,将拒绝正态性。

 

转载于:https://www.cnblogs.com/jackchen-Net/p/8073956.html

最后

以上就是害羞往事为你收集整理的数据面试题:正态分布、偏态分布及峰态分布的全部内容,希望文章能够帮你解决数据面试题:正态分布、偏态分布及峰态分布所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(77)

评论列表共有 0 条评论

立即
投稿
返回
顶部