概述
def read_cifar10_data():
data_dir = CURRENT_DIR+'/data/cifar-10-batches-py/'
train_name = 'data_batch_'
test_name = 'test_batch'
train_X = None
train_Y = None
test_X = None
test_Y = None
# train data
for i in range(1,6):
file_path = data_dir+train_name+str(i)
with open(file_path, 'rb') as fo:
dict = cPickle.load(fo)
if train_X is None:
train_X = dict['data']
train_Y = dict['labels']
else:
train_X = np.concatenate((train_X, dict['data']), axis=0)
train_Y = np.concatenate((train_Y, dict['labels']), axis=0)
# test_data
file_path = data_dir + test_name
with open(file_path, 'rb') as fo:
dict = cPickle.load(fo)
test_X = dict['data']
test_Y = dict['labels']
train_X = train_X.reshape((50000, 3, 32, 32)).transpose(0, 2, 3, 1)
train_X_resized = np.zeros((50000,227,227,3))# 创建一个存储修改过图片分辨率的矩阵
for i in range(0,50000):
img = train_X[i]
img = Image.fromarray(img)
img = np.array(img.resize((227,227),Image.BICUBIC))# 修改分辨率,再转为array类
train_X_resized[i,:,:,:] = img
test_X = test_X.reshape((10000, 3, 32, 32)).transpose(0, 2, 3, 1)
test_X_resized = np.zeros((10000,227,227,3))# 创建一个存储修改过图片分辨率的矩阵
for i in range(0,10000):
img = test_X[i]
img = Image.fromarray(img)
img = np.array(img.resize((227,227),Image.BICUBIC))# 修改分辨率,再转为array类
test_X_resized[i,:,:,:] = img
train_y_vec = np.zeros((len(train_Y), 10), dtype=np.float)
test_y_vec = np.zeros((len(test_Y), 10), dtype=np.float)
for i, label in enumerate(train_Y):
train_y_vec[i, int(train_Y[i])] = 1. # y_vec[1,3] means #2 row, #4column
for i, label in enumerate(test_Y):
test_y_vec[i, int(test_Y[i])] = 1. # y_vec[1,3] means #2 row, #4column
return train_X_resized/255., train_y_vec, test_X_resized/255., test_y_vec
缺点:需要至少60G内存
最后
以上就是坚强鱼为你收集整理的cifar10 32*32转227*227 适合AlexNet的全部内容,希望文章能够帮你解决cifar10 32*32转227*227 适合AlexNet所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复