tf.keras模块中的Model类
- class Model
- 从输入输出建立Model
- 继承Model类建立Model
- Model类中的method
class Model
Model groups layers into an object with training and inference features.
tensorflow API
从输入输出建立Model
- With the “functional API”, where you start from Input, you chain
layer calls to specify the model’s forward pass, and finally you
create your model frominputs
andoutputs
:
复制代码
1
2
3
4
5
6
7import tensorflow as tf inputs = tf.keras.Input(shape=(3,)) x = tf.keras.layers.Dense(4, activation=tf.nn.relu)(inputs) outputs = tf.keras.layers.Dense(5, activation=tf.nn.softmax)(x) model = tf.keras.Model(inputs=inputs, outputs=outputs)
继承Model类建立Model
- By subclassing the Model class: in that case, you should define your layers in
__init__
and you should implement the model’s forward pass incall
. - If you subclass Model, you can optionally have a training argument (boolean) in call, which you can use to specify a different behavior in training and inference:
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17import tensorflow as tf class MyModel(tf.keras.Model): def __init__(self): super(MyModel, self).__init__() self.dense1 = tf.keras.layers.Dense(4, activation=tf.nn.relu) self.dense2 = tf.keras.layers.Dense(5, activation=tf.nn.softmax) def call(self, inputs): x = self.dense1(inputs) if training: x = self.dropout(x, training=training) return self.dense2(x) model = MyModel()
- Once the model is created, you can config the model with losses and
metrics withmodel.compile()
, train the model withmodel.fit()
, or
use the model to do prediction withmodel.predict()
.
Model类中的method
- compile
复制代码
1
2
3
4
5compile( optimizer='rmsprop', loss=None, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, **kwargs )
最后
以上就是醉熏裙子最近收集整理的关于tf.keras模块中的Model类的全部内容,更多相关tf.keras模块中内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复