我是靠谱客的博主 彩色大神,最近开发中收集的这篇文章主要介绍Spark 2.4.0编程指南--Spark DataSourcesSpark 2.4.0编程指南–Spark DataSources,觉得挺不错的,现在分享给大家,希望可以做个参考。
概述
Spark 2.4.0编程指南–Spark DataSources
更多资源
- github: https://github.com/opensourceteams/spark-scala-maven-2.4.0
视频
- Spark 2.4.0编程指南–Spark DataSources(bilibili视频): https://www.bilibili.com/video/av38193405/?p=5
前置条件
- 已安装好java(选用的是java 1.8.0_191)
- 已安装好scala(选用的是scala 2.11.121)
- 已安装好hadoop(选用的是Hadoop 2.9.2)
- 已安装好hive(选用的是apache-hive-3.1.1-bin)
- 已安装好spark(选用的是spark-2.4.0-bin-hadoop2.7)
技能标签
- parquet、orc、csv、json、text、avro格式文件的读、写
- spark.sql直接运行文件
- BucketyBy,PartitionBy 读写文件
- mergining dataSet
- jdbc(mysql)读写操作
- Hive操作(create drop database ,create,insert,show,truncate,drop table)
- 官网: http://spark.apache.org/docs/2.4.0/sql-data-sources.html
常规 Load/Save (parquet)
读取parquest格式文件
- 读取parquet格式文件users.parquet
- users.parquet 直接打开是十六进制数据
spark.read.load("hdfs://standalone.com:9000/home/liuwen/data/parquest/users.parquet").show
//+------+--------------+----------------+
//| name|favorite_color|favorite_numbers|
//+------+--------------+----------------+
//|Alyssa| null| [3, 9, 15, 20]|
//| Ben| red| []|
//+------+--------------+----------------+
保存parquest格式文件
- 读取parquet格式文件users.parquet
- users.parquet 直接打开是十六进制数据
- 保存的数据会在这个目录下namesAndFavColors.parquet
val usersDF = spark.read.load("hdfs://standalone.com:9000/home/liuwen/data/parquest/users.parquet")
usersDF.select("name", "favorite_color").write.save("hdfs://standalone.com:9000/home/liuwen/data/parquest/namesAndFavColors.parquet")
spark.read.load("hdfs://m0:9000/home/liuwen/data/parquest/namesAndFavColors.parquet").show
//+------+--------------+
//| name|favorite_color|
//+------+--------------+
//|Alyssa| null|
//| Ben| red|
//+------+--------------+
Load/Save (json)
读取json格式文件
- 读取json格式文件people.json
- people.json存储的是json格式的数据
- 注意,json格式存储的文件,每行中都包含字段名称信息,比较占空间,不推荐使用,可以考虑用默认的 parquet格式存储
spark.read.format("json").load("hdfs://standalone.com:9000/home/liuwen/data/json/people.json").show
//+----+-------+
//| age| name|
//+----+-------+
//|null|Michael|
//| 30| Andy|
//| 19| Justin|
//+----+-------+
保存json格式文件
- 读取json格式文件people.json
- people.json存储的是json格式的数据
spark.read.format("json").load("hdfs://standalone.com:9000/home/liuwen/data/json/people.json").show
//+----+-------+
//| age| name|
//+----+-------+
//|null|Michael|
//| 30| Andy|
//| 19| Justin|
//+----+-------+
//保存json格式数据到hdfs上面
ds.select("name", "age").write.format("json").save("hdfs://standalone.com:9000/home/liuwen/output/json/namesAndAges.json")
//读取保存的数据
spark.read.format("json").load("hdfs://standalone.com:9000/home/liuwen/output/json/namesAndAges.json").show
//+----+-------+
//| age| name|
//+----+-------+
//|null|Michael|
//| 30| Andy|
//| 19| Justin|
//+----+-------+
- HDFS查看保存的文件信息
hdfs dfs -ls -R hdfs://standalone.com:9000/home/liuwen/output/json
// drwxr-xr-x - liuwen supergroup 0 2018-12-18 17:44 //hdfs://standalone.com:9000/home/liuwen/output/json/namesAndAges.json
//-rw-r--r-- 1 liuwen supergroup 0 2018-12-18 17:44 //hdfs://standalone.com:9000/home/liuwen/output/json/namesAndAges.json/_SUCCESS
//-rw-r--r-- 1 liuwen supergroup 71 2018-12-18 17:44 //hdfs://standalone.com:9000/home/liuwen/output/json/namesAndAges.json/part-00000-6690fee8-33d3-413c-8364-927f02593ff2-c000.json
hdfs dfs -cat hdfs://standalone.com:9000/home/liuwen/output/json/namesAndAges.json/*
//数据在文件 namesAndAges.json/part-00000-6690fee8-33d3-413c-8364-927f02593ff2-c000.json
//{"name":"Michael"}
//{"name":"Andy","age":30}
//{"name":"Justin","age":19}
//[liuwen@standalone ~]$
Load/Save (csv)
读取csv格式文件
val peopleDFCsv = spark.read.format("csv").option("sep", ";").option("inferSchema", "true").option("header", "true").load("hdfs://m0:9000/home/liuwen/data/csv/people.csv")
//peopleDFCsv: org.apache.spark.sql.DataFrame = [name: string, age: int ... 1 more field]
peopleDFCsv.show
// +-----+---+---------+
//| name|age| job|
//+-----+---+---------+
//|Jorge| 30|Developer|
//| Bob| 32|Developer|
//+-----+---+---------+
写csv格式文件
//保存json格式数据到hdfs上面
peopleDFCsv.select("name", "age").write.format("csv").save("hdfs://standalone.com:9000/home/liuwen/output/csv/people.csv")
spark.read.format("csv").option("sep", ",").option("inferSchema", "true").option("header", "true").load("hdfs://standalone.com:9000//home/liuwen/output/csv/people.csv").show
//+-----+---+
//|Jorge| 30|
//+-----+---+
//| Bob| 32|
//+-----+---+
- 查看hdfs上csv文件
hdfs dfs -ls -R hdfs://m0:9000/home/liuwen/output/csv/
//drwxr-xr-x - liuwen supergroup 0 2018-12-18 18:04 hdfs://m0:9000/home/liuwen/output/csv/people.csv
//-rw-r--r-- 1 liuwen supergroup 0 2018-12-18 18:04 hdfs://m0:9000/home/liuwen/output/csv/people.csv/_SUCCESS
//-rw-r--r-- 1 liuwen supergroup 16 2018-12-18 18:04 hdfs://m0:9000/home/liuwen/output/csv/people.csv/part-00000-d6ad5563-5908-4c0e-8e6f-f13cd0ff445e-c000.csv
hdfs dfs -text hdfs://m0:9000/home/liuwen/output/csv/people.csv/part-00000-d6ad5563-5908-4c0e-8e6f-f13cd0ff445e-c000.csv
//Jorge,30
//Bob,32
Load/Save (orc)
写orc格式文件
val usersDF = spark.read.load("hdfs://standalone.com:9000/home/liuwen/data/parquest/users.parquet")
usersDF.show
//+------+--------------+----------------+
//| name|favorite_color|favorite_numbers|
//+------+--------------+----------------+
//|Alyssa| null| [3, 9, 15, 20]|
//| Ben| red| []|
//+------+--------------+----------------+
usersDF.write.format("orc").option("orc.bloom.filter.columns", "favorite_color").option("orc.dictionary.key.threshold", "1.0").save("hdfs://standalone.com:9000/home/liuwen/output/orc/users_with_options.orc")
读orc格式文件
spark.read.format("orc").load("hdfs://standalone.com:9000/home/liuwen/output/orc/users_with_options.orc").show
//+------+--------------+----------------+
//| name|favorite_color|favorite_numbers|
//+------+--------------+----------------+
//|Alyssa| null| [3, 9, 15, 20]|
//| Ben| red| []|
//+------+--------------+----------------+
直接在文件上运行sql
- 直接在文件上运行sql
val sqlDF = spark.sql("SELECT * FROM parquet.`hdfs://standalone.com:9000/home/liuwen/data/parquest/users.parquet`")
sqlDF.show
//+------+--------------+----------------+
//| name|favorite_color|favorite_numbers|
//+------+--------------+----------------+
//|Alyssa| null| [3, 9, 15, 20]|
//| Ben| red| []|
//+------+--------------+----------------+
saveAsTable
- 把数据保存为Hive表
val sqlDF = spark.read.format("json").load("hdfs://standalone.com:9000/home/liuwen/output/json/employ.json")
sqlDF.show
//+----+-------+
//| age| name|
//+----+-------+
//|null|Michael|
//| 30| Andy|
//| 19| Justin|
sqlDF.write.saveAsTable("people_bucketed")
val sqlDF2 = spark.sql("select * from people_bucketed")
- 读取hive表中的数据
val sqlDF = spark.sql("select * from people_bucketed")
bucket
- 把数据保存为Hive表,bucketBy 分桶
val sqlDF = spark.read.format("json").load("hdfs://standalone.com:9000/home/liuwen/output/json/employ.json")
sqlDF.show
//+----+-------+
//| age| name|
//+----+-------+
//|null|Michael|
//| 30| Andy|
//| 19| Justin|
sqlDF.write.bucketBy(42, "name").sortBy("salary")
.saveAsTable("people_bucketed3")
val sqlDF2 = spark.sql("select * from people_bucketed3")
sqlDF2.show
- 读取hive表中的数据
val sqlDF = spark.sql("select * from people_bucketed3")
partitionBy
- 把数据保存为Hive表,partitionBy 按字段分区
val spark = sparkSession(true)
val usersDF = spark.read.load("hdfs://standalone.com:9000/home/liuwen/data/parquest/users.parquet")
usersDF.show()
//+------+--------------+----------------+
//| name|favorite_color|favorite_numbers|
//+------+--------------+----------------+
//|Alyssa| null| [3, 9, 15, 20]|
//| Ben| red| []|
//+------+--------------+----------------+
//保存在HDFS上 hdfs://standalone.com:9000/user/liuwen/namesPartByColor.parquet
usersDF.write.partitionBy("favorite_color").format("parquet").save("namesPartByColor.parquet")
- 读取hive表中的数据
val sqlDF = spark.sql("select * from namesPartByColor.parquet")
dataFrame的合并
- 把两个dataSet合并,就是把两个dataSet先保存到hdfs的文件上,这两个dataSet的文件在同一个目录上,再读这个目录下的文件
import spark.implicits._
val df1 = Seq(1,2,3,5).map(x => (x,x * x)).toDF("a","b")
val df2 = Seq(10,20,30,50).map(x => (x,x * x)).toDF("a","b")
df1.write.parquet("data/test_table/key=1")
df1.show()
// +---+---+
// | a| b|
// +---+---+
// | 1| 1|
// | 2| 4|
// | 3| 9|
// | 5| 25|
// +---+---+
df2.write.parquet("data/test_table/key=2")
df2.show()
// +---+----+
// | a| b|
// +---+----+
// | 10| 100|
// | 20| 400|
// | 30| 900|
// | 50|2500|
// +---+----+
val mergedDF = spark.read.option("mergeSchema", "true").parquet("data/test_table")
mergedDF.printSchema()
// root
// |-- a: integer (nullable = true)
// |-- b: integer (nullable = true)
// |-- key: integer (nullable = true)
mergedDF.show()
// +---+----+---+
// | a| b|key|
// +---+----+---+
// | 10| 100| 2|
// | 20| 400| 2|
// | 30| 900| 2|
// | 50|2500| 2|
// | 1| 1| 1|
// | 2| 4| 1|
// | 3| 9| 1|
// | 5| 25| 1|
// +---+----+---+
mysql(jdbc)
- 读mysql的数据
val connectionProperties = new Properties()
connectionProperties.put("user","admin")
connectionProperties.put("password","000000")
val jdbcDF = spark.read.jdbc("jdbc:mysql://mysql.com:3306/test","test.test2",connectionProperties)
jdbcDF.show()
- 往mysql写数据
val connectionProperties = new Properties()
connectionProperties.put("user","admin")
connectionProperties.put("password","000000")
val jdbcDF = spark.read.jdbc("jdbc:mysql://macbookmysql.com:3306/test","test.test",connectionProperties)
jdbcDF.show()
jdbcDF.write.mode(SaveMode.Overwrite).jdbc("jdbc:mysql://macbookmysql.com:3306/test","test.test3",connectionProperties)
spark hive
- 就是支持hive的语法,只不过是在spark中执行,把hive的数据转成dataFrame,供spark算子计算
val warehouseLocation = new File("spark-warehouse").getAbsolutePath
val spark = SparkSession
.builder()
.master("local")
// .master("spark://standalone.com:7077")
.appName("Spark Hive Example")
.config("spark.sql.warehouse.dir", warehouseLocation)
.enableHiveSupport()
.getOrCreate()
import spark.sql
sql("CREATE database IF NOT EXISTS test_tmp")
sql("use test_tmp")
sql("CREATE TABLE IF NOT EXISTS student(name VARCHAR(64), age INT)")
sql("INSERT INTO TABLE student VALUES ('小王', 35), ('小李', 50)")
end
最后
以上就是彩色大神为你收集整理的Spark 2.4.0编程指南--Spark DataSourcesSpark 2.4.0编程指南–Spark DataSources的全部内容,希望文章能够帮你解决Spark 2.4.0编程指南--Spark DataSourcesSpark 2.4.0编程指南–Spark DataSources所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复