概述
管道技术是Linux的一种基本的进程间通信技术。在本文中,我们将为读者介绍管道技术的模型,匿名管道和命名管道技术的定义和区别,以及这两种管道的创建方法。同时,阐述如何在应用程序和命令行中通过管道进行通信的详细方法。
- 管道技术模型
管道技术是Linux操作系统中由来已久的一种进程间通信机制。所有的管道技术,无论是半双工的匿名管道,还是命名管道,它们都是利用FIFO排队模型来指挥进程间的通信。对于管道,我们可以形象地把它们当作是连接两个实体的一个单向连接器。例如,请看下面的命令:
ls -1 | wc -l
该命令首先创建两个进程,一个对应于ls –1,另一个对应于wc –l。然后,把第一个进程的标准输出设为第二个进程的标准输入。它的作用是计算当前目录下的文件数量。
图1:管道示意图
如上图所示,前面的例子实际上就是在两个命令之间建立了一根管道(有时我们也将之称为命令的流水线操作)。第一个命令ls执行后产生的输出作为了第二个命令wc的输入。这是一个半双工通信,因为通信是单向的。两个命令之间的连接的具体工作是由内核来完成的。下面我们将会看到,除了命令之外,应用程序也可以使用管道进行连接。
- 信号和消息的区别
我们知道,进程间的信号通信机制在传递信息时是以信号为载体的,但管道通信机制的信息载体是消息。
那么信号和消息之间的区别在哪里呢?
首先,在数据内容方面,信号只是一些预定义的代码,用于表示系统发生的某一状况;消息则为一组连续语句或符号,不过量也不会太大。在作用方面,信号担任进程间少量信息的传送,一般为内核程序用来通知用户进程一些异常情况的发生;消息则用于进程间交换彼此的数据。
在发送时机方面,信号可以在任何时候发送;消息则不可以在任何时刻发送。在发送者方面,信号不能确定发送者是谁;消息则知道发送者是谁。在发送对象方面,信号是发给某个进程;消息则是发给消息队列。在处理方式上,信号可以不予理会;消息则是必须处理的。在数据传输效率方面,信号不适合进大量的信息传输,因为它的效率不高;消息虽然不适合大量的数据传送,但它的效率比信号强,因此适于中等数量的数据传送。
- 管道和命名管道的区别
我们知道,命名管道和管道都可以在进程间传送消息,但它们也是有区别的。
匿名管道技术只能用于连接具有共同祖先的进程,例如父子进程间的通信,它无法实现不同用户的进程间的信息共享。再者,管道不能常设,当访问管道的进程终止时,管道也就撤销。这些限制给它的使用带来不少限制,但是命名管道却克服了这些限制。
命名管道也称为FIFO,是一种永久性的机构。FIFO文件也具有文件名、文件长度、访问许可权等属性,它也能像其它Linux文件那样被打开、关闭和删除,所以任何进程都能找到它。换句话说,即使是不同祖先的进程,也可以利用命名管道进行通信。
如果想要全双工通信,那最好使用Sockets API。下面我们分别介绍这两种管道,然后详细说明用来进行管道编程的编程接口和系统级命令。
- 管道编程技术
在程序中利用管道进行通信时,根据通信主体大体可以分为两种情况:一种是具有共同祖先的进程间的通信,比较简单;另一种是任意进程间通信,相对较为复杂。下面我们先从较为简单的进程内通信开始介绍。
涉及的函数:
在利用管道技术进行编程时,主要用到三个函数:
pipe函数:该函数用于创建一个新的匿名管道。
mkfifo函数:该函数用于创建一个命名管道(fifo)。
dup函数:该函数用于拷贝文件描述符。[ˈdju:plikit]
当然,在管道通信过程中还用到其它函数。需要注意的是,管道无非就是一对文件描述符,因此任何能够操作文件描述符的函数都可以使用管道。这包括但不限于这些函数:select、read、write、 fcntl、freopen,等等。
pipe(建立管道)
#include
int pipe(int filedes[2]);
函数说明
pipe()会建立管道,并将文件描述符由参数 filedes 数组返回。filedes[0]为管道里的读取端,用read调用,
filedes[1]则为管道的写入端。
返回值:若成功则返回零,否则返回-1,错误原因存于 errno 中。
错误代码:
EMFILE 进程已用完文件描述词最大量。
ENFILE 系统已无文件描述词可用。
EFAULT 参数 filedes 数组地址不合法。
write (向打开的设备或文件中写数据)
#include <unistd.h>
ssize_t write(int fd, const void *buf, size_t count);
参数说明:
fd:要进行写操作的文件描述词。
buf:需要输出的缓冲区
count:最大输出字节计数
read(从打开的设备或文件中读取数据)
#include <unistd.h>
ssize_t read(int fd, void *buf, size_t count);
参数说明:
count是请求读取的字节数,读上来的数据保存在缓冲区buf中。
返回值:
成功返回读取的字节数,出错返回-1并设置errno,如果在调read之前已到达文件末尾,则这次read返回0。注意返回值类型是ssize_t,表示有符号的size_t。
read函数返回时,返回值说明了buf中前多少个字节是刚读上来的。有些情况下,实际读到的字节数(返回值)会小于请求读的字节数count,例如:读常规文件时,在读到count个字节之前已到达文件末尾。例如,距文件末尾还有30个字节而请求读100个字节,则read返回30,下次read将返回0。
从终端设备读,通常以行为单位,读到换行符就返回了。
mkfifo(建立具名管道)
mkfifo函数的作用是在文件系统中创建一个文件,该文件用于提供FIFO功能,即命名管道。前边讲的那些管道都没有名字,因此它们被称为匿名管道,或简称管道。对文件系统来说,匿名管道是不可见的,它的作用仅限于在同进程内、或父子进程进程间进行通信。而命名管道是一个可见的文件,因此,它可以用于任何两个进程之间的通信,不管这两个进程是不是父子进程,也不管这两个进程之间有没有关系。mkfifo函数的原型如下所示:
#include <sys/types.h>
#include <sys/stat.h>
int mkfifo( const char *pathname, mode_t mode );
mkfifo函数需要两个参数,第一个参数(pathname)是将要在文件系统中创建的一个专用文件。第二个参数(mode)用来规定FIFO的读写权限。mkfifo函数如果调用成功的话,返回值为0;如果调用失败返回值为-1。下面我们以一个实例来说明如何使用mkfifo函数建一个fifo,具体代码如下所示:
int ret;
...
ret = mkfifo( "/tmp/cmd_pipe", S_IFIFO | 0666 );
if (ret == 0) {
// 成功建立命名管道
} else {
// 创建命名管道失败
}
在这个例子中,利用/tmp目录中的cmd_pipe文件建立了一个命名管道(即fifo)。之后,就可以打开这个文件进行读写操作,并以此进行通信了。命名管道一旦打开,就可以利用典型的输入输出函数从中读取内容。举例来说,下面的代码段向我们展示了如何通过fgets函数来从管道中读取内容:
pfp = fopen( "/tmp/cmd_pipe", "r" );
...
ret = fgets( buffer, MAX_LINE, pfp );
我们还能向管道中写入内容,下面的代码段向我们展示了利用fprintf函数向管道写入的具体方法:
pfp = fopen( "/tmp/cmd_pipe", "w+");
...
ret = fprintf( pfp, "Here’s a test string!n" );
需要注意的是,调用open()打开命名管道的进程可能会被阻塞。但如果同时用读写方式(O_RDWR)打开,则一定不会导致阻塞;如果以只读方式(O_RDONLY)打开,则调用open()函数的进程将会被阻塞直到有写方打开管道;同样以写方式(O_WRONLY)打开也会阻塞直到有读方式打开管道。(谁先打开谁堵塞等)
当使用open()来打开FIFO文件时,O_NONBLOCK标志会有影响
1、当使用O_NONBLOCK 标志时,打开FIFO 文件来读取的操作会立刻返回,但是若还没有其他进程打开FIFO 文件来读取,则写入的操作会返回ENXIO 错误代码。
2、没有使用O_NONBLOCK 标志时,打开FIFO 来读取的操作会等到其他进程打开FIFO文件来写入才正常返回。同样地,打开FIFO文件来写入的操作会等到其他进程打开FIFO 文件来读取后才正常返回。
返回值:
若成功则返回0,否则返回-1,错误原因存于errno中。
错误代码:
EACCESS 参数pathname所指定的目录路径无可执行的权限
EEXIST 参数pathname所指定的文件已存在。
ENAMETOOLONG 参数pathname的路径名称太长。
ENOENT 参数pathname包含的目录不存在。
ENOSPC 文件系统的剩余空间不足。
ENOTDIR 参数pathname路径中的目录存在但却非真正的目录。
EROFS 参数pathname指定的文件存在于只读文件系统内。
1.具有共同祖先的进程间通信管道编程
为了了解管道编程技术,我们先举一个例子。在这个例中,我们将在进程中新建一个管道,然后向它写入一个消息,管道读取消息后将其发出。代码如下所示:
示例代码1:管道程序示例
1: #include <unistd.h>
2: #include <stdio.h>
3: #include <string.h>
4:
5: #define MAX_LINE 80
6: #define PIPE_STDIN 0
7: #define PIPE_STDOUT 1
8:
9: int main()
10: {
11: const char *string={"A sample message."};
12: int ret, myPipe[2];
13: char buffer[MAX_LINE+1];
14:
15: /* 建立管道 */
16: ret = pipe( myPipe );
18: if (ret == 0) {
20: /* 将消息写入管道 */
21: write( myPipe[PIPE_STDOUT], string, strlen(string) );
23: /* 从管道读取消息 */
24: ret = read(myPipe[PIPE_STDIN], buffer, MAX_LINE);
26: /* 利用Null结束字符串 */
27: buffer[ ret ] = 0;
29: printf("%sn", buffer);
31: }
32:
33: return 0;
34: }
上面的示例代码中,我们利用pipe调用新建了一个管道,参见第16行代码。 我们还建立了一个由两个元素组成的数组,用来描述我们的管道。我们的管道被定义为两个单独的文件描述符,一个用来输入,一个用来输出。我们能从管道的一端输入,然后从另一端读出。如果调用成功,pipe函数返回值为0。返回后,数组myPipe中存放的是两个新的文件描述符,其中元素myPipe[1]包含的文件描述符用于管道的输入,元素myPipe[0] 包含的文件描述符用于管道的输出。
在第21行代码,我们利用write函数把消息写入管道。站在应用程序的角度,它是在向stdout输出。现在,该管道存有我们的消息,我们可以利用第24行的read函数来读它。对于应用程序来说,我们是利用stdin描述符从管道读取消息的。read函数把从管道读取的数据存放到buffer变量中。然后在buffer变量的末尾添加一个NULL,这样就能利用printf函数正确的输出它了。
图2:示例代码1中半双工管道的示意图
这个例子中,通信是在同一进程内发生的,也可以在具有共同祖先的进程间发生,即父进程和子进程通信。这样做局限性太大,但我们只是用它来得到一个感性的认识。接下来,我们将介绍更为高级的进程间的管道通信。
2.进程间通信管道编程
下面我们考察在一个包含多个进程的应用程序中的管道示例。
示例代码:演示两个进程间的管道模型的代码
1:#include <stdio.h>
2: #include <unistd.h>
3: #include <string.h>
4: #include <wait.h>
5:
6: #define MAX_LINE 80
7:
8: int main()
9: {
10: int thePipe[2], ret;
11: char buf[MAX_LINE+1];
12: const char *testbuf={"a test string."};
13: if ( pipe( thePipe ) == 0 )
{
14: if (fork() == 0)
{
15: ret = read( thePipe[0], buf, MAX_LINE );
16: buf[ret] = 0;
17: printf( "Child read %sn", buf );
18: } else
{
19: ret = write( thePipe[1], testbuf, strlen(testbuf) );
20: ret = wait( NULL );
21: }
22: }
23: return 0;
24: }
在该程序中(见示例代码2),第14行用于创建一个管道,然后进程在第16行分叉,变成一个父进程和一个子进程。在子进程中,我们尝试从(在第18行建立的)管道的输入描述符读取,这时该进程将被挂起,直到管道中有可以读取的内容为止。
读完后,我们用NULL作为读取的内容的结束符,这样的话,读的这些内容就能使用printf函数正确打印输出了。父进程先是利用存放在thePipe[1]中的“写文件标识符”向管道写入测试字符串,然后就使用wait函数来等待子进程退出。
在我们的这个程序中需要加以注意的是,我们的子进程是如何继承父进程利用pipe函数建立的文件描述符的,以及如何利用该文件描述符进行通信的。函数fork一旦执行,子进程会继承父进程的功能和管道的文件描述符,但对于内核来说,父进程和子进程是平等的,它们是独立运行的。也就是说,两个进程分别具有单独的内存空间,它们正是通过pipe函数来互通有无的。
需要注意的是,在这个示例程序中我们没有说明如何关闭管道,因为一旦进程结束,与管道有关的资源将被自动释放。尽管如此,为了养成一种良好的编程习惯,最好利用close调用来关闭管道的描述符,如下所示:
ret = pipe( myPipe );
...
close( myPipe[0] );
close( myPipe[1] );
如果管道的写入端关闭,但是还有进程尝试从管道读取的话,将被返回0,用来指出管道已不可用,并且应当关闭它。如果管道的读出端关闭,但是还有进程尝试向管道写入的话,试图写入的进程将收到一个SIGPIPE信号,至于信号的具体处理则要视其信号处理程序而定了。
dup函数和dup2函数
dup和dup2也是两个非常有用的调用,它们的作用都是用来复制一个文件的描述符。它们经常用来重定向进程的stdin、stdout和stderr。这两个函数的原型如下所示:
#include <unistd.h>
int dup( int oldfd );
int dup2( int oldfd, int targetfd )
利用函数dup,我们可以复制一个描述符。传给该函数一个既有的描述符,它就会返回一个新的描述符,这个新的描述符是传给它的描述符的拷贝。这意味着,这两个描述符共享同一个数据结构。例如,如果我们对一个文件描述符执行lseek操作,得到的第一个文件的位置和第二个是一样的。下面是用来说明dup函数使用方法的代码片段:
int fd1, fd2;
...
fd2 = dup( fd1 );
需要注意的是,我们可以在调用fork之前建立一个描述符,这与调用dup建立描述符的效果是一样的(子进程复制父进程的文件描述符),子进程也同样会收到一个复制出来的描述符。
dup2函数跟dup函数相似,但dup2函数允许调用者规定一个有效描述符和目标描述符的id。dup2函数成功返回时,目标描述符(dup2函数的第二个参数)将变成源描述符(dup2函数的第一个参数)的复制品,换句话说,两个文件描述符现在都指向同一个文件,并且是函数第一个参数指向的文件。下面我们用一段代码加以说明:
int oldfd;
oldfd = open("app_log", (O_RDWR | O_CREATE), 0644 );
dup2( oldfd, 1 );
close( oldfd );
本例中,我们打开了一个新文件,称为“app_log”,并收到一个文件描述符,该描述符叫做oldfd。我们调用dup2函数,参数为oldfd和1,这会导致用我们新打开的文件描述符替换掉由1代表的文件描述符(即stdout,因为标准输出文件的id为1)。任何写到stdout的东西,现在都将改为写入名为“app_log”的文件中。需要注意的是,dup2函数在复制了oldfd之后,会立即将其关闭,但不会关掉新近打开的文件描述符,因为文件描述符1现在也指向它。
下面我们介绍一个更加深入的示例代码。回忆一下本文前面讲的命令行管道,在那里,我们将ls –1命令的标准输出作为标准输入连接到wc –l命令。接下来,我们就用一个C程序来加以说明这个过程的实现。代码如下面的示例代码3所示。
示例代码3:利用C实现命令的流水线操作的代码:
1: #include <stdio.h>
2: #include <stdlib.h>
3: #include <unistd.h>
5: int main()
6: {
7: int pfds[2];
8: if ( pipe(pfds) == 0 ) {
9: if ( fork() == 0 ) {
10: close(1);
11: dup2( pfds[1], 1 );
12: close( pfds[0] );
13: execlp( "ls", "ls", "-1", NULL );
14: } else {
15: close(0);
16: dup2( pfds[0], 0 );
17: close( pfds[1] );
18: execlp( "wc", "wc", "-l", NULL );
19: }
20: }
21: return 0;
22: }
在示例代码3中,首先建立一个管道,然后将应用程序分成两个进程:一个子进程和一个父进程。接下来,在子进程中首先关闭stdout描述符,然后提供了ls –1命令功能,不过它不是写到stdout,而是写到我们建立的管道的输入端,这是通过dup函数来完成重定向的。使用dup2函数把stdout重定向到管道(pfds[1])。之后,马上关掉管道的输入端。然后,使用execlp函数把子进程的映像替换为命令ls –1的进程映像,一旦该命令执行,它的任何输出都将发给管道的输入端。
现在来研究一下管道的接收端。从代码中可以看出,管道的接收端是由父进程来担当的。首先关闭stdin描述符,因为我们不会从机器的键盘等标准设备文件来接收数据的输入,而是从其它程序的输出中接收数据。然后,再一次用到dup2函数,把stdin改成管道的输出端,这是通过让文件描述符0(即常规的stdin)等于pfds[0]来实现的。关闭管道的stdout端(pfds[1]),因为在这里用不到它。最后,使用execlp函数把父进程的映像替换为命令wc -1的进程映像,命令wc -1把管道的内容作为它的输入。
在该程序中,需要格外关注的是,我们的子进程把它的输出重定向的管道的输入,然后,父进程将它的输入重定向到管道的输出。这在实际的应用程序开发中是非常有用的一种技术。
(dup与直接赋值不一样
int p,q;
if((p=open("c_fid.c", O_RDONLY)) == -1) sys_err("open error");
q = dup(p);
puts("dup:");
printf("file p,q fd is:%d %dn", q, p);
printf("close file p ok?: %dn", close(p));
printf("close file q ok?: %dn", close(q));
if((p=open("c_fid.c", O_RDONLY)) == -1) sys_err("open error");
q = p;
puts("=:");
printf("file p,q fd is:%d %dn", q, p);
printf("close file p ok?: %dn", close(p));
printf("close file q ok?: %dn", close(q));
dup:
file p,q fd is:4 3 //文件p,q使用不同的文件描述符
close file p ok?: 0
close file q ok?: 0 //文件关闭成功
=:
file p,q fd is:3 3 //简单复制
close file p ok?: 0
close file q ok?: -1//关闭失败,原因是此描述符已经被关闭了
由此看出,dup是产生一个新的文件描述符id和指针在进程表项中,但是他们共用文件表,这时,关闭一个文件描述符,另外一个仍旧可用,文件表并不会被释放。而赋值语句不同,它只是简单的在另外一个变量中记录原始文件指针等,2个变量的文件描述符相同,进程表项中并不产生新的项目。使用文件描述符关闭了一次后文件就真的关闭了。
)
- 与管道相关的系统命令
现在开始,我们来研究与进程间通信密切相关的一些系统命令。首先介绍的是mkfifo命令,它的功能与mkfifo系统调用相似,只不过它是用来在命令行中建立一个命名管道。
在命令行下建立fifo的专用文件,即命名管道的常用方法有两个,mkfifo命令便是其中之一。mkfifo命令的一般用法如下所示:
mkfifo [options] name
这里的options一般为-m,即模式,用以指出读写权限;name是要创建的管道的名称,必要时可以加上路径。如果我们没有规定权限,该命令会采取默认值0644。这里以一个具体实例来说明如何在/tmp目录下面建立一个称为cmd_pipe的命名管道:
$ mkfifo /tmp/cmd_pipe
下面用例子说明如何给命名管道指定读写权限。这里我们先将前面建立的管道删掉,然后重新建立管道,并指定管道的权限为0644,当然您也可以指定其他权限:
$ rm cmd_pipe
$ mkfifo -m 0644 /tmp/cmd_pipe
上面的权限一经建立,就能够在命令行下通过此管道进行通信了。比如,可以在一个终端上,利用cat命令来读取管道:
$ cat cmd_pipe
当输入该命令后,我们的进程就会被挂起,等待写入程序打开此管道。现在,在另一个终端上利用echo命令向这个命名管道写入:
$ echo Hi > cmd_pipe
这个命令结束后,要读取该管道的程序(即cat)将被唤醒,然后结束。为醒目起见,这里列出完整的读取方(也就是读取管道的程序)输入的命令和得到的结果:
$ cat cmd_pipe
Hi
$
由此看来,命名管道不仅在C程序中非常有用,而且在脚本中作用也很大。当然,如果组合使用,效果也是很好的。
除了mkfifo命令外,mknod命令也可以用来创建命名管道,其用法如下所示:
$ mknod cmd_pipe p
该命令执行后,将在当前目录下创建一个命名管道cmd_pipe,p用于指出建立的是命名管道。(b 块文件;c 字符文件)
最后
以上就是迷人未来为你收集整理的Linux管道技术的全部内容,希望文章能够帮你解决Linux管道技术所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复