文章目录
- 前言
- 单一锁控制的弊端
- 单一锁的优化:锁粒度的细化
- 锁的管理
- 锁的容量控制
- 锁的资源优先级问题
- 锁管理的demo样例
前言
在分布式系统中,为了保持数据操作的一致性,我们会看到锁在里面会有广泛的应用。简单一点的,我们可能就用一个简单的对象锁来做线程安全的同步。再细粒度一些的,我们会用到读写锁,然后对具体操作的属性(Read Or Write)在进行读写锁的分离控制。但今天笔者想对此话题再展开细致的探讨,相比较于使用单一锁模式,我们还是可以做出更进一步的改善的。
单一锁控制的弊端
如前文所提到的,不管说是普通的object对象锁还是说ReadWriteLock来说,它们本质上还是Single Lock(单一锁)。这种lock在客户端请求巨大的情况下会有严重的锁竞争问题,一个典型的例子是HDFS NN里的FSN锁。一旦某个请求获得了这个锁,那么其它的请求就会被block住了。所以说单一锁的问题在于,它的粒度有些时候还是太粗了。所以这里就涉及到一个锁粒度的问题了。
单一锁的优化:锁粒度的细化
那么怎么取做锁粒度的细化呢?读写锁的分离是一种常见的手段。但更好的一种做法是在实际资源上进行锁控制。因为我们使用锁去做线程安全同步控制时的初衷,是为了避免同时又多个操作在修改某个共同的资源(比如元数据的更新)。但其实不同的资源的相互更新其实是不影响的,那这时我们可以将大的锁拆分为A资源锁以及B资源锁。
用一个更具象的例子来解释这个问题:比如在分布式存储系统的元数据更新里,我们可以将DB级别的lock控制拆分为以table级别的lock。这里的Resource就从DB细粒度为Table。
锁的管理
如果锁的粒度已经按照对于实际的资源进行控制的话,这时我们可以考虑在上面包装出一个锁的管理器,由此管理器对外“借出”或“归还”锁。在这个管理类里,我们还能对当前的活跃锁做引用计数的更新。如果某个锁在某次unlock后没有再被外部引用了,我们就可以将其从锁管理器中移除出去了。
锁的容量控制
当然我们还需要对锁管理器做一个最大容量的控制,如果当前活跃锁达到容量阈值时,则后面的新锁申请也将会被Block住。这在一定程度上控制的是客户端的concurrency的行为度。
锁的资源优先级问题
这里还有一个隐蔽的问题:锁的资源优先级问题。比如说我们有3个资源,它们的资源范围关系如下:
- A,资源最大(包含多个B类资源)
- B,资源适中(包含多个C类资源)
- C,最小粒度资源
假设我们对上述3类资源做锁控制的话,可以遵循以下原则:
在持有低优先级资源锁的情况下,不能继续再获取其上资源的锁。持有高优先级资源锁的情况下,还可以继续获取其下低一级资源的锁。
这个原则对应上面ABC资源的情况就是,用户在获取A锁资源的情况下,可以继续获取B或C资源的锁,而假如说目前已经获取C锁的情况下,是无法获取B锁和A锁的。
锁管理的demo样例
以下是摘自Hadoop Ozone里的一个锁管理器的实现,里面涉及到了上文提到的一些要点,供大家学习参考。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with this * work for additional information regarding copyright ownership. The ASF * licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the License. * You may obtain a copy of the License at * <p> * http://www.apache.org/licenses/LICENSE-2.0 * <p> * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS,WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. */ package org.apache.hadoop.ozone.lock; import org.apache.commons.pool2.impl.GenericObjectPool; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.hdds.HddsConfigKeys; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.util.Map; import java.util.concurrent.ConcurrentHashMap; /** * Manages the locks on a given resource. A new lock is created for each * and every unique resource. Uniqueness of resource depends on the * {@code equals} implementation of it. */ public class LockManager<T> { private static final Logger LOG = LoggerFactory.getLogger(LockManager.class); private final Map<T, ActiveLock> activeLocks = new ConcurrentHashMap<>(); private final GenericObjectPool<ActiveLock> lockPool = new GenericObjectPool<>(new PooledLockFactory()); /** * Creates new LockManager instance. * * @param conf Configuration object */ public LockManager(Configuration conf) { int maxPoolSize = conf.getInt(HddsConfigKeys.HDDS_LOCK_MAX_CONCURRENCY, HddsConfigKeys.HDDS_LOCK_MAX_CONCURRENCY_DEFAULT); lockPool.setMaxTotal(maxPoolSize); } /** * Acquires the lock on given resource. * * <p>If the lock is not available then the current thread becomes * disabled for thread scheduling purposes and lies dormant until the * lock has been acquired. */ public void lock(T resource) { activeLocks.compute(resource, (k, v) -> { ActiveLock lock; try { if (v == null) { // 锁为空,则在锁对象池中创建并借出 lock = lockPool.borrowObject(); } else { lock = v; } // 增加锁引用计数 lock.incrementActiveCount(); } catch (Exception ex) { LOG.error("Unable to obtain lock.", ex); throw new RuntimeException(ex); } return lock; //得到锁后进行锁的lock操作 }).lock(); } /** * Releases the lock on given resource. */ public void unlock(T resource) { ActiveLock lock = activeLocks.get(resource); if (lock == null) { // Someone is releasing a lock which was never acquired. Log and return. LOG.warn("Trying to release the lock on {}, which was never acquired.", resource); return; } lock.unlock(); activeLocks.computeIfPresent(resource, (k, v) -> { v.decrementActiveCount(); if (v.getActiveLockCount() != 0) { return v; } // 如果锁没有被引用了,则在锁对象池中移出此锁 lockPool.returnObject(v); return null; }); } }
上面的ActiveLock实质上是一个经过简单包装的ReentrantLock,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with this * work for additional information regarding copyright ownership. The ASF * licenses this file to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the License. * You may obtain a copy of the License at * <p> * http://www.apache.org/licenses/LICENSE-2.0 * <p> * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS,WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. */ package org.apache.hadoop.ozone.lock; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; /** * Lock implementation which also maintains counter. */ public final class ActiveLock { private Lock lock; private AtomicInteger count; /** * Use ActiveLock#newInstance to create instance. */ private ActiveLock() { this.lock = new ReentrantLock(); this.count = new AtomicInteger(0); } /** * Creates a new instance of ActiveLock. * * @return new ActiveLock */ public static ActiveLock newInstance() { return new ActiveLock(); } /** * Acquires the lock. * * <p>If the lock is not available then the current thread becomes * disabled for thread scheduling purposes and lies dormant until the * lock has been acquired. */ public void lock() { lock.lock(); } /** * Releases the lock. */ public void unlock() { lock.unlock(); } /** * Increment the active count of the lock. */ void incrementActiveCount() { count.incrementAndGet(); } /** * Decrement the active count of the lock. */ void decrementActiveCount() { count.decrementAndGet(); } /** * Returns the active count on the lock. * * @return Number of active leases on the lock. */ int getActiveLockCount() { return count.get(); } /** * Resets the active count on the lock. */ void resetCounter() { count.set(0); } @Override public String toString() { return lock.toString(); } }
最后
以上就是威武便当最近收集整理的关于论分布式系统中单一锁控制的优化前言单一锁控制的弊端单一锁的优化:锁粒度的细化锁的管理锁管理的demo样例的全部内容,更多相关论分布式系统中单一锁控制内容请搜索靠谱客的其他文章。
发表评论 取消回复