我是靠谱客的博主 尊敬蜜粉,最近开发中收集的这篇文章主要介绍《利用Python进行数据分析》笔记--pandas入门阅读SeanCheney博主上传的文章有感,特此写一篇笔记,如侵必删。,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

阅读SeanCheney博主上传的文章有感,特此写一篇笔记,如侵必删。


第五章 pandas入门


pandas的数据结构

引入pandas:import pandas as pd
两个数据结构from pandas import Series, DataFrame

1. Series - 一维数组 + 索引

1)定义
  • 列表:索引自动生成
In [11]: obj = pd.Series([4, 7, -5, 3])

In [12]: obj
Out[12]: 
0    4
1    7
2   -5
3    3
dtype: int64

 #访问数据以及索引
In [13]: obj.values
Out[13]: array([ 4,  7, -5,  3])

In [14]: obj.index  # like range(4)
Out[14]: RangeIndex(start=0, stop=4, step=1)
  • 指定索引
In [15]: obj2 = pd.Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c'])

In [16]: obj2
Out[16]: 
d    4
b    7
a   -5
c    3
dtype: int64
  • 字典创建
In [26]: sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}

In [27]: obj3 = pd.Series(sdata)

In [28]: obj3
Out[28]: 
Ohio      35000
Oregon    16000
Texas     71000
Utah       5000
dtype: int64
2)索引
  • 类似于字典的访问:
obj2['a'] #单个访问
obj2[['c', 'a', 'd']] #多个访问
  • 布尔索引:
In [21]: obj2[obj2 > 0]
Out[21]: 
d    6
b    7
c    3
dtype: int64
3)索引的修改

通过赋值的方式修改,修改index,注意数据的顺序不会变

In [42]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']

In [43]: obj
Out[43]: 
Bob      4
Steve    7
Jeff    -5
Ryan     3
dtype: int64
4)操作运算
  • 数组运算
obj2 * 2 #对应的数据乘以2。索引不变
np.exp(obj2) #取自然指数

 #相加操作时,对应的索引相加,相当远取并集
In [37]: obj3 + obj4
Out[37]: 
California         NaN
Ohio           70000.0
Oregon         32000.0
Texas         142000.0
Utah               NaN
  • 布尔运算
In [24]: 'b' in obj2
Out[24]: True

In [25]: 'e' in obj2
Out[25]: False
  • 检测数据是否缺失
In [32]: pd.isnull(obj4) #true表示数据缺失
Out[32]: 
California     True
Ohio          False
Oregon        False
Texas         False
dtype: bool

2. DataFrame

表格型数据结构,既有行索引又有列索引,可以看做由Series组成的字典。

1)定义
  • 等长列表组成的字典
data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],
        'year': [2000, 2001, 2002, 2001, 2002, 2003],
        'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}
frame = pd.DataFrame(data)
In [45]: frame
Out[45]: 
   pop   state  year
0  1.5    Ohio  2000
1  1.7    Ohio  2001
2  3.6    Ohio  2002
3  2.4  Nevada  2001
4  2.9  Nevada  2002
5  3.2  Nevada  2003
  • 嵌套字典
In [65]: pop = {'Nevada': {2001: 2.4, 2002: 2.9},
....:        'Ohio': {2000: 1.5, 2001: 1.7, 2002: 3.6}}
In [66]: frame3 = pd.DataFrame(pop)

In [67]: frame3
Out[67]: 
      Nevada  Ohio
2000     NaN   1.5
2001     2.4   1.7
2002     2.9   3.6
  • Series组成一列
In [58]: val = pd.Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five'])

In [59]: frame2['debt'] = val

In [60]: frame2
Out[60]: 
       year   state  pop  debt
one    2000    Ohio  1.5   NaN
two    2001    Ohio  1.7  -1.2
three  2002    Ohio  3.6   NaN
four   2001  Nevada  2.4  -1.5
five   2002  Nevada  2.9  -1.7
six    2003  Nevada  3.2   NaN
  • 布尔值
In [61]: frame2['eastern'] = frame2.state == 'Ohio'

In [62]: frame2
Out[62]: 
       year   state  pop  debt  eastern
one    2000    Ohio  1.5   NaN     True
two    2001    Ohio  1.7  -1.2     True
three  2002    Ohio  3.6   NaN     True
four   2001  Nevada  2.4  -1.5    False
five   2002  Nevada  2.9  -1.7    False
six    2003  Nevada  3.2   NaN    False
2)索引
  • 索引前五行
In [46]: frame.head()
Out[46]: 
   pop   state  year
0  1.5    Ohio  2000
1  1.7    Ohio  2001
2  3.6    Ohio  2002
3  2.4  Nevada  2001
4  2.9  Nevada  2002
  • 索引列 - 类似字典的访问
In [51]: frame2['state']
Out[51]: 
one        Ohio
two        Ohio
three      Ohio
four     Nevada
five     Nevada
six      Nevada
Name: state, dtype: object

In [52]: frame2.year
Out[52]: 
one      2000
two      2001
three    2002
four     2001
five     2002
six      2003
Name: year, dtype: int64
  • 索引行 - loc函数
In [53]: frame2.loc['three']
Out[53]: 
year     2002
state    Ohio
pop       3.6
debt      NaN
Name: three, dtype: object
  • 索引指定行、指定列
In [70]: pdata = {'Ohio': frame3['Ohio'][:-1],
....:          'Nevada': frame3['Nevada'][:2]}

In [71]: pd.DataFrame(pdata)
Out[71]: 
      Nevada  Ohio
2000     NaN   1.5
2001     2.4   1.7
3)索引的修改
In [48]: frame2 = pd.DataFrame(data, columns=['year', 'state', 'pop', 'debt'],
   ....:                       index=['one', 'two', 'three', 'four',
   ....:                              'five', 'six'])

In [49]: frame2
Out[49]: 
       year   state  pop debt
one    2000    Ohio  1.5  NaN
two    2001    Ohio  1.7  NaN
three  2002    Ohio  3.6  NaN
four   2001  Nevada  2.4  NaN
five   2002  Nevada  2.9  NaN
six    2003  Nevada  3.2  NaN

In [50]: frame2.columns
Out[50]: Index(['year', 'state', 'pop', 'debt'], dtype='object')
4)操作运算
  • 删除 - 删除指定列
In [63]: del frame2['eastern']

In [64]: frame2.columns
Out[64]: Index(['year', 'state', 'pop', 'debt'], dtype='object')
  • 数组运算 - 转置
In [67]: frame3
Out[67]: 
      Nevada  Ohio
2000     NaN   1.5
2001     2.4   1.7
2002     2.9   3.6

In [68]: frame3.T
Out[68]: 
        2000  2001  2002
Nevada   NaN   2.4   2.9
Ohio     1.5   1.7   3.6

3. 索引对象

  • 访问index
In [76]: obj = pd.Series(range(3), index=['a', 'b', 'c'])

In [77]: index = obj.index

In [78]: index
Out[78]: Index(['a', 'b', 'c'], dtype='object')

In [79]: index[1:]
Out[79]: Index(['b', 'c'], dtype='object')
  • 生成index
In [80]: labels = pd.Index(np.arange(3))

In [81]: labels
Out[81]: Int64Index([0, 1, 2], dtype='int64')

In [82]: obj2 = pd.Series([1.5, -2.5, 0], index=labels)

In [83]: obj2
Out[83]: 
0    1.5
1   -2.5
2    0.0
dtype: float64

基本功能

1. 重要索引 - reindex

In [91]: obj = pd.Series([4.5, 7.2, -5.3, 3.6], index=['d', 'b', 'a', 'c'])

In [92]: obj
Out[92]: 
d    4.5
b    7.2
a   -5.3
c    3.6
dtype: float64

 #用reindex重拍索引,如果没有,引入缺失值
In [93]: obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])

In [94]: obj2
Out[94]: 
a   -5.3
b    7.2
c    3.6
d    4.5
e    NaN
dtype: float64

缺失值可以用ffill方法进行向前填充

In [95]: obj3 = pd.Series(['blue', 'purple', 'yellow'], index=[0, 2, 4])

In [96]: obj3
Out[96]: 
0      blue
2    purple
4    yellow
dtype: object

In [97]: obj3.reindex(range(6), method='ffill')
Out[97]: 
0      blue
1      blue
2    purple
3    purple
4    yellow
5    yellow
dtype: object

对于dataframe,相当于多了一个columns属性,如果要修改列的索引,需要制定cloumns索引值

In [98]: frame = pd.DataFrame(np.arange(9).reshape((3, 3)),
   ....:                      index=['a', 'c', 'd'],
   ....:                      columns=['Ohio', 'Texas', 'California'])

In [99]: frame
Out[99]: 
   Ohio  Texas  California
a     0      1           2
c     3      4           5
d     6      7           8

 #进行行索引重排
In [100]: frame2 = frame.reindex(['a', 'b', 'c', 'd'])

In [101]: frame2
Out[101]: 
   Ohio  Texas  California
a   0.0    1.0         2.0
b   NaN    NaN         NaN
c   3.0    4.0         5.0
d   6.0    7.0         8.0

 #进行列索引重排
In [102]: states = ['Texas', 'Utah', 'California']

In [103]: frame.reindex(columns=states)
Out[103]: 
   Texas  Utah  California
a      1   NaN           2
c      4   NaN           5
d      7   NaN           8

2. 删除 - drop

  • 删除Series指定索引行
In [105]: obj = pd.Series(np.arange(5.), index=['a', 'b', 'c', 'd', 'e'])

In [106]: obj
Out[106]: 
a    0.0
b    1.0
c    2.0
d    3.0
e    4.0
dtype: float64

In [107]: new_obj = obj.drop('c')

In [108]: new_obj
Out[108]: 
a    0.0
b    1.0
d    3.0
e    4.0
dtype: float64
  • 删除DataFrame指定行或列(默认是行,删除列需要指定axis=1)
In [110]: data = pd.DataFrame(np.arange(16).reshape((4, 4)),
   .....:                     index=['Ohio', 'Colorado', 'Utah', 'New York'],
   .....:                     columns=['one', 'two', 'three', 'four'])

In [111]: data
Out[111]: 
          one  two  three  four
Ohio        0    1      2     3
Colorado    4    5      6     7
Utah        8    9     10    11
New York   12   13     14    15

 #删除指定索引行
In [112]: data.drop(['Colorado', 'Ohio'])
Out[112]: 
          one  two  three  four
Utah        8    9     10    11
New York   12   13     14    15

 #删除指定索引列
In [113]: data.drop('two', axis=1)
Out[113]: 
          one  three  four
Ohio        0      2     3
Colorado    4      6     7
Utah        8     10    11
New York   12     14    15

 #这两种删除列的方式都可以
In [114]: data.drop(['two', 'four'], axis='columns')
Out[114]: 
          one  three
Ohio        0      2
Colorado    4      6
Utah        8     10
New York   12     14

3. 索引、选取、过滤

除了前面介绍的几种索引,还有切片型的索引以及布尔索引

 #切片型的索引 
In [117]: obj = pd.Series(np.arange(4.), index=['a', 'b', 'c', 'd'])

In [118]: obj
Out[118]: 
a    0.0
b    1.0
c    2.0
d    3.0
dtype: float64

In [123]: obj[[1, 3]]
Out[123]: 
b    1.0
d    3.0
dtype: float64

 #利用标签的切片,中括号末端包含!!
In [125]: obj['b':'c']
Out[125]:
b    1.0
c    2.0
dtype: float64

 #DataFrame列访问,同Series一样,行访问有一个简单方法,注意下面,末端不包含
In [132]: data[:2]
Out[132]: 
          one  two  three  four
Ohio        0    1      2     3
Colorado    4    5      6     7

 #布尔索引
In [134]: data < 5
Out[134]: 
            one    two  three   four
Ohio       True   True   True   True
Colorado   True  False  False  False
Utah      False  False  False  False
New York  False  False  False  False

In [135]: data[data < 5] = 0

In [136]: data
Out[136]: 
          one  two  three  four
Ohio        0    0      0     0
Colorado    0    5      6     7
Utah        8    9     10    11
New York   12   13     14    15

4. 用loc和iloc进行选取

对于DataFrame,前面的索引默认都是进行列索引,如果要行索引,可以采用切片。除此之外,利用loc和iloc函数可以方便进行行和列的索引。

 #标签索引loc,第一个参数是列,第二个参数是行
In [137]: data.loc['Colorado', ['two', 'three']] #索引值可以采用切片,末端封闭
Out[137]: 
two      5
three    6
Name: Colorado, dtype: int64

 #整数索引iloc,第一个参数是列,第二个参数是行
In [138]: data.iloc[2, [3, 0, 1]] #索引值可以采用切片,末端不封闭
Out[138]: 
four    11
one      8
two      9
Name: Utah, dtype: int64

In [139]: data.iloc[2]
Out[139]: 
one       8
two       9
three    10
four     11
Name: Utah, dtype: int64

In [140]: data.iloc[[1, 2], [3, 0, 1]]
Out[140]: 
          four  one  two
Colorado     7    0    5
Utah        11    8    9

5. 算数运算和数据对齐

相加就是取并集,注意,如果两个对象索引不重叠,那么设为NAN。因此,如果两个对象没有公用的行或列标签,那么结果全是NAN。

In [155]: df1 = pd.DataFrame(np.arange(9.).reshape((3, 3)), columns=list('bcd'),
   .....:                    index=['Ohio', 'Texas', 'Colorado'])

In [156]: df2 = pd.DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),
   .....:                    index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [157]: df1
Out[157]: 
            b    c    d
Ohio      0.0  1.0  2.0
Texas     3.0  4.0  5.0
Colorado  6.0  7.0  8.0

In [158]: df2
Out[158]: 
          b     d     e
Utah    0.0   1.0   2.0
Ohio    3.0   4.0   5.0
Texas   6.0   7.0   8.0
Oregon  9.0  10.0  11.0

In [159]: df1 + df2
Out[159]: 
            b   c     d   e
Colorado  NaN NaN   NaN NaN
Ohio      3.0 NaN   6.0 NaN
Oregon    NaN NaN   NaN NaN
Texas     9.0 NaN  12.0 NaN
Utah      NaN NaN   NaN NaN

6. 在算术方法中填充值

  • 相加 df1.add(df2, fill_value=0) 类似的还有减法(sub)、除法(div)、乘法(mul),见图。
  • 重新索引 df1.reindex(columns=df2.columns, fill_value=0)

7. DataFrame和Series之间的运算

Series对DataFrame的每一行都进行操作,因此DataFrame的列数等于Series的维数。

In [179]: frame = pd.DataFrame(np.arange(12.).reshape((4, 3)),
   .....:                      columns=list('bde'),
   .....:                      index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [180]: series = frame.iloc[0]

In [181]: frame
Out[181]: 
          b     d     e
Utah    0.0   1.0   2.0
Ohio    3.0   4.0   5.0
Texas   6.0   7.0   8.0
Oregon  9.0  10.0  11.0

In [182]: series
Out[182]: 
b    0.0
d    1.0
e    2.0
Name: Utah, dtype: float64

 #DataFrame的每一行都减去Series
In [183]: frame - series
Out[183]: 
          b    d    e
Utah    0.0  0.0  0.0
Ohio    3.0  3.0  3.0
Texas   6.0  6.0  6.0
Oregon  9.0  9.0  9.0

如果,要对DataFrame的每一列进行操作,需指定轴。此时,DataFrame的行数等于Series的维数。

In [187]: frame
Out[187]: 
          b     d     e
Utah    0.0   1.0   2.0
Ohio    3.0   4.0   5.0
Texas   6.0   7.0   8.0
Oregon  9.0  10.0  11.0

In [188]: series3
Out[188]: 
Utah       1.0
Ohio       4.0
Texas      7.0
Oregon    10.0
Name: d, dtype: float64

In [189]: frame.sub(series3, axis='index')
Out[189]: 
          b    d    e
Utah   -1.0  0.0  1.0
Ohio   -1.0  0.0  1.0
Texas  -1.0  0.0  1.0
Oregon -1.0  0.0  1.0

8. 函数应用和映射

  • NumPy的ufuncs(元素级数组方法)比如abs取绝对值
In [190]: frame = pd.DataFrame(np.random.randn(4, 3), columns=list('bde'),
   .....:                      index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [191]: frame
Out[191]: 
               b         d         e
Utah   -0.204708  0.478943 -0.519439
Ohio   -0.555730  1.965781  1.393406
Texas   0.092908  0.281746  0.769023
Oregon  1.246435  1.007189 -1.296221

In [192]: np.abs(frame)
Out[192]: 
               b         d         e
Utah    0.204708  0.478943  0.519439
Ohio    0.555730  1.965781  1.393406
Texas   0.092908  0.281746  0.769023
Oregon  1.246435  1.007189  1.296221
  • apply方法 - 定义lambda函数
In [193]: f = lambda x: x.max() - x.min()#每一列的最大值-最小值

In [194]: frame.apply(f)
Out[194]: 
b    1.802165
d    1.684034
e    2.689627
dtype: float64

如果要进行行计算,需要输入参数axis

In [195]: frame.apply(f, axis='columns')
Out[195]:
Utah      0.998382
Ohio      2.521511
Texas     0.676115
Oregon    2.542656
dtype: float64

返回DataFrame的每一列的最大值和最小值

 #定义一个返回Series的函数,包括最大值和最小值
In [196]: def f(x):
   .....:     return pd.Series([x.min(), x.max()], index=['min', 'max'])

In [197]: frame.apply(f)
Out[197]: 
            b         d         e
min -0.555730  0.281746 -1.296221
max  1.246435  1.965781  1.393406
  • applymap方法格式化浮点数
 #取两位小数
In [198]: format = lambda x: '%.2f' % x

In [199]: frame.applymap(format)
Out[199]: 
            b     d      e
Utah    -0.20  0.48  -0.52
Ohio    -0.56  1.97   1.39
Texas    0.09  0.28   0.77
Oregon   1.25  1.01  -1.30

9. 排序和排名

In [203]: frame = pd.DataFrame(np.arange(8).reshape((2, 4)),
   .....:                      index=['three', 'one'],
   .....:                      columns=['d', 'a', 'b', 'c'])

In [204]: frame.sort_index()
Out[204]: 
       d  a  b  c
one    4  5  6  7
three  0  1  2  3

 #按照行的大小进行排序
In [205]: frame.sort_index(axis=1)
Out[205]:
       a  b  c  d
three  1  2  3  0
one    5  6  7  4

 #指定降序排序
In [206]: frame.sort_index(axis=1, ascending=False)
Out[206]: 
       d  c  b  a
three  0  3  2  1
one    4  7  6  5

汇总和计算描述统计

  • 求和
In [230]: df = pd.DataFrame([[1.4, np.nan], [7.1, -4.5],
   .....:                    [np.nan, np.nan], [0.75, -1.3]],
   .....:                   index=['a', 'b', 'c', 'd'],
   .....:                   columns=['one', 'two'])

In [231]: df
Out[231]: 
    one  two
a  1.40  NaN
b  7.10 -4.5
c   NaN  NaN
d  0.75 -1.3

In [232]: df.sum()
Out[232]: 
one    9.25
two   -5.80
dtype: float64

In [233]: df.sum(axis=1)
Out[233]:
a    1.40
b    2.60
c     NaN
d   -0.55

最后

以上就是尊敬蜜粉为你收集整理的《利用Python进行数据分析》笔记--pandas入门阅读SeanCheney博主上传的文章有感,特此写一篇笔记,如侵必删。的全部内容,希望文章能够帮你解决《利用Python进行数据分析》笔记--pandas入门阅读SeanCheney博主上传的文章有感,特此写一篇笔记,如侵必删。所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(52)

评论列表共有 0 条评论

立即
投稿
返回
顶部