我是靠谱客的博主 酷炫鞋垫,最近开发中收集的这篇文章主要介绍torch.utils.data.DataLoader使用方法,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。
在训练模型时使用到此函数,用来把训练数据分成多个小组,此函数每次抛出一组数据。直至把所有的数据都抛出。就是做一个数据的初始化。

生成迭代数据非常方便,请看如下示例:

"""
批训练,把数据变成一小批一小批数据进行训练。
DataLoader就是用来包装所使用的数据,每次抛出一批数据
"""
import torch
import torch.utils.data as Data
BATCH_SIZE = 5
x = torch.linspace(1, 10, 10)
y = torch.linspace(10, 1, 10)
# 把数据放在数据库中
torch_dataset = Data.TensorDataset(x, y)
loader = Data.DataLoader(
# 从数据库中每次抽出batch size个样本
dataset=torch_dataset,
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=2,
)
def show_batch():
for epoch in range(3):
for step, (batch_x, batch_y) in enumerate(loader):
# training
print("steop:{}, batch_x:{}, batch_y:{}".format(step, batch_x, batch_y))
if __name__ == '__main__':
show_batch()

结果:

 

我们来看一下变量类型:

 

转载于:https://www.cnblogs.com/demo-deng/p/10623334.html

最后

以上就是酷炫鞋垫为你收集整理的torch.utils.data.DataLoader使用方法的全部内容,希望文章能够帮你解决torch.utils.data.DataLoader使用方法所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(55)

评论列表共有 0 条评论

立即
投稿
返回
顶部