我是靠谱客的博主 端庄小甜瓜,最近开发中收集的这篇文章主要介绍OOM when allocating tensor with shape[96,3,299,299] and type float on /job:localhost/replica:0/task:...,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

 

单个GPU启动任务时报OOM的错误:

tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[96,3,299,299] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[Node: InceptionV3/InceptionV3/Conv2d_1a_3x3/Conv2D-0-TransposeNHWCToNCHW-LayoutOptimizer = Transpose[T=DT_FLOAT, Tperm=DT_INT32, _device="/job:localhost/replica:0/task:0/device:GPU:0"](fifo_queue_Dequeue/_1557, PermConstNHWCToNCHW-LayoutOptimizer)]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

[[Node: train_op/_1567 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_6943_train_op", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

报错GPU内存不足,就使用2个GPU,使用2个GPU的时候,发现有一块GPU是使用率空闲的,但是内存是满的。添加如下代码:

from keras import backend as K
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
sess = tf.Session(config=config)
K.set_session(sess)

参考:https://github.com/keras-team/keras/issues/6031

 

最后

以上就是端庄小甜瓜为你收集整理的OOM when allocating tensor with shape[96,3,299,299] and type float on /job:localhost/replica:0/task:...的全部内容,希望文章能够帮你解决OOM when allocating tensor with shape[96,3,299,299] and type float on /job:localhost/replica:0/task:...所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(56)

评论列表共有 0 条评论

立即
投稿
返回
顶部