概述
filter sorted heapq counter namedtuple reduce deque pickle islice re.split endswith stat os
#filter
>>> aa = [1,2,3,45,6,7]
>>> list(filter(lambda x:x>3,aa))
>>> [45, 6, 7]
#sorted
>>> sorted(d.items(),key=lambda x:x[1],reverse=True)
#heapq
>>> import heapq
>>> heap.nlargest(3,[1,2,2,2,3,4,4,45,5,6])
#counter
>>> from collections import Counter
>>> aa = Counter([1,2,2,2,3,4,4,45,5,6])
>>> aa.most_common(3)
#namedtuple
>>> from collection import namedtuple
>>> Stu = namedtuple('Stu',['name','age','sex'])
>>> s2 = Stu('jm',16,'male')
>>> s2.name
'jm'
#reduce
>>> dl = [{'d':3,'a':2,'b':4},{'f':3,'g':2,'b':4},{'d':3,'f':2,'b':4}]
>>> reduce(lambda a,b : a & b ,map(dict.keys,dl))
#deque
>>> from collections import deque
>>> q = deque([],5)
>>> q.append(1)
>>> import pickle
>>> pickle.dump(q,open('save.pkl','wb'))
>>> pickle.load(open('save.pkl','rb'))
deque([1], maxlen=5)
#islice
>>> from functools import islice
>>> list(islice(range(10),4,6))
[4, 5]
>>> def query_by_order(d,a,b=None):
... a -= 1
... if b is None:
... b= a+1
... return list(islice(d,a,b))
#re.split
>>> re.split('[;,|]+','ab;ffff|gdhgdjh,jfjje')
['ab', 'ffff', 'gdhgdjh', 'jfjje']
#endswith stat os 可执行权限
>>> import stat
>>> import os
>>> for fn in os.listdir():
... if fn.endswith(('.py','.sh')):
... fs = os.stat(fn)
... os.chmod(fn,fs.st_mode | stat.S_IXUSR)
# re.sub 替换字符串
>>> re.sub(r'(d{4})-(d{2})-(d{2})',r'2/3/1',log)
# iterator 和iterable的区别为迭代器只能使用一次,可迭代对象可使用多次
from collections import Iterable, Iterator import requests class WeatherIterator(Iterator): def __init__(self, caties): self.caties = caties self.index = 0 def __next__(self): if self.index == len(self.caties): raise StopIteration city = self.caties[self.index] self.index += 1 return self.get_weather(city) def get_weather(self, city): url = 'http://wthrcdn.etouch.cn/weather_mini?city=' + city r = requests.get(url) data = r.json()['data']['forecast'][0] return city, data['high'], data['low'] class WeatherIterable(Iterable): def __init__(self, cities): self.cities = cities def __iter__(self): return WeatherIterator(self.cities) def show(w): for x in w: print(x) w = WeatherIterable(['北京', '上海', '广州'] * 10) show(w)
#yield生成器对象自动维护迭代状态
from collections import Iterable class PrimeNumbers(Iterable): def __init__(self, a, b): self.a = a self.b = b def __iter__(self): for k in range(self.a, self.b + 1): if self.is_prime(k): yield k def is_prime(self, k): return False if k < 2 else all(map(lambda x: k % x, range(2, k))) pn = PrimeNumbers(1, 30) for n in pn: print(n)
#reversed 反向迭代实现
from decimal import Decimal class FloatRange: def __init__(self, a, b, step): self.a = Decimal(str(a)) self.b = Decimal(str(b)) self.step = Decimal(str(step)) def __iter__(self): t = self.a while t <= self.b: yield float(t) t += self.step def __reversed__(self): t = self.b while t >= self.a: yield float(t) t -= self.step fr = FloatRange(3.0, 4.0, 0.2) for x in fr: print(x) print('-' * 20) for x in reversed(fr): print(x)
转载于:https://www.cnblogs.com/Erick-L/p/11161777.html
最后
以上就是震动犀牛为你收集整理的Python内置函数复习的全部内容,希望文章能够帮你解决Python内置函数复习所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复