我是靠谱客的博主 冷傲口红,最近开发中收集的这篇文章主要介绍Graph Neural Network: A First GlanceResourcesVocabularyShort NotesQ&A,觉得挺不错的,现在分享给大家,希望可以做个参考。
概述
@[TOC]GNN
Resources
从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一)
Vocabulary
- Fixed Point Theorem : a convergency guarantee
- Contraction Map
- BP: Almeida-Pineda vs BPTT
Short Notes
- To make f f f a Contraction Map: Penalize Jacobian Matrix of f f f over H H H. I.e. Bound its derivative.
- GNN: stop when converged.
- GNN drawbacks
- Edges serve only as connections not learned
- Not suitable for learning Graph Representation: all nodes share info with each other.
- GGNN: replace convergent f f f with a Gated Unit like in RNN. Use BPTT instead of AP and can output before convergence. Edges now have weights that can be updated.
Q&A
- From Tree to Graph: this is all?
- Spectual Domain vs Spatial Domain
- How to update weights
- Attention
最后
以上就是冷傲口红为你收集整理的Graph Neural Network: A First GlanceResourcesVocabularyShort NotesQ&A的全部内容,希望文章能够帮你解决Graph Neural Network: A First GlanceResourcesVocabularyShort NotesQ&A所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复