我是靠谱客的博主 冷傲口红,最近开发中收集的这篇文章主要介绍Graph Neural Network: A First GlanceResourcesVocabularyShort NotesQ&A,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

@[TOC]GNN

Resources

从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一)

Vocabulary

  • Fixed Point Theorem : a convergency guarantee
  • Contraction Map
  • BP: Almeida-Pineda vs BPTT

Short Notes

  • To make f f f a Contraction Map: Penalize Jacobian Matrix of f f f over H H H. I.e. Bound its derivative.
  • GNN: stop when converged.
  • GNN drawbacks
    • Edges serve only as connections not learned
    • Not suitable for learning Graph Representation: all nodes share info with each other.
  • GGNN: replace convergent f f f with a Gated Unit like in RNN. Use BPTT instead of AP and can output before convergence. Edges now have weights that can be updated.

Q&A

  • From Tree to Graph: this is all?
  • Spectual Domain vs Spatial Domain
  • How to update weights
  • Attention

最后

以上就是冷傲口红为你收集整理的Graph Neural Network: A First GlanceResourcesVocabularyShort NotesQ&A的全部内容,希望文章能够帮你解决Graph Neural Network: A First GlanceResourcesVocabularyShort NotesQ&A所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(50)

评论列表共有 0 条评论

立即
投稿
返回
顶部