我是靠谱客的博主 超级墨镜,最近开发中收集的这篇文章主要介绍python分词统计词频_基于结巴分词做的全文分词统计词频小脚本,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

受朋友之托,写一个小脚本,断断续续做了两天,写一下两天的收获。

起因

有个朋友说专业文档很枯燥难懂,需要一个能把全文的关键词找出来并排序的东西,找不到现成的,问我能不能做一个。我前些天也听车神说有关分词的东西,用这个机会认识一下中文分词也不错。本来还想弄下 PDF 2 TXT的,不过没找到合适的工具,先弄这个吧。

要实现把全文的关键词找出来并排序,就需要识别文中的词而不是字,有了词才能进行排序。中文和其他语言不同,没有明确的词分界,不像英语有空格作为词边界。分词算法什么的我实在弄不出来了,所以用别人的吧。上百度和Github找工具,最后确定用结巴分词,因为结巴分词有JavaScript版,分词还是很OK的。

开干

分词统计并排序

之前是用JavaScript版的结巴分词写的,不过在分词统计的时候没想起来JavaScript有什么能排序的模块,就换Python版的结巴分词写了。

因为那个朋友的资料是繁体的,为了兼容繁体,我引入了繁体字典,不过加载好像有问题,我直接把繁体字典当用户字典加载了。

说这么多干嘛,上源码。

# index.py

#encoding=utf-8

'''

/*@version: 0.1

* @author: Bubao

* @contact: asd565586630@gmail.com

* @time: 2017-07-13 00:22:00

*/

'''

import jieba

import jieba.posseg as pseg

from collections import Counter

# 用户字典 可自行添加专业名词 防止被jieba分错了

jieba.load_userdict('dict/user.dict')

# jieba.load_userdict('dict/dict.txt.big')

# 简体&繁体字典 这个不用修改,所以我让他当用户字典加载了

#jieba.set_dictionary('dict/dict.txt.big')

# './源文件.txt'为想打开的文件

file_object = open('./源文件.txt','r')

## 定义一个 list

L =list()

## 获取带词性的词对象(没学过py不知道得到的是什么)

words = pseg.cut(file_object.read())

i=0

## 遍历这个词对象

for word, flag in words:

## 如果词性(flag)或者词(word)属于这个范围就直接跳过 自己填写

if flag=="x" or flag=="p" or flag=="uj" or word=="年"or word=="月"or word=="日" :

continue

## 打印计数 为了区分程序是不是挂了

i=i+1

print(i)

##把词追加到list中

L.append(word)

## 计算出现次数

getObj = Counter(L)

## 写到./getObj.json文件里

f = open('./getObj.json', 'w')

f.write(str(getObj).replace("Counter(","").replace(")","").replace("'",'"'))

f.close()

file_object.close()

## end

查询关键词频

弄完分词,朋友又说能不能加一个关键词查找,可以到想要的词出现的频率。我毕竟Python是边学边写的,还是用node写这个功能把。

/* Search.js*/

/*@version: 0.1

* @author: Bubao

* @contact: asd565586630@gmail.com

* @time: 2017-07-13 00:22:00

*/

var fs = require('fs');

/**

* [keyWord description]

* @type {Array}

* 把想搜索的词用 “"关键词",” 这种方式写在 “[ ]” 中间,

* 记得关键词引号后面有英文逗号

* 引号也是引文的

*/

var keyWord = [

"本行",

"人民币",

];

var json = JSON.parse(fs.readFileSync('./getObj.json'));

var Arr = []

for (var i = 0; i < keyWord.length; i++) {

let get = keyWord[i] + ':' + json[keyWord[i]]

console.log(get)

Arr.push(get)

}

//你要的关键词在这里

fs.writeFileSync('keyWord.txt', Arr.join('n'), 'utf8')

自动化脚本

因为用了两种语言,运行要分段,我这么懒的人,这么会等第一段运行完再运行第二段呢,一言不合写sh。

# main.sh

#/*@version: 0.1

# * @author: Bubao

# * @contact: asd565586630@gmail.com

# * @time: 2017-07-13 00:22:00

# */

python index.py

echo "----------------关键词-------------------"

node Search.js

echo "----------------------------------------

排序在getObj.json文件

关键词搜索在keyWord.txt文件"

怎么用

把要转换的文件放在在当前文件夹,并改名为源文件.txt,运行sudo easy_install jieba

终端下运行 python index.py,等待完成,等待完成期间可以在Search.js文件里把想要搜索的关键字填在数组里,保存好。

完成第二步,接着执行node Search.js,等待完成。

关键字搜索结果在keyWord.txt文件里

或者写个脚本自动化,sh main.sh

额外收获

毕竟是自己摸索写的东西,收获还是不错的。为了以后想用的时候能找得到,便也记录下来。

分词工具

jieba:这个工具挺好用的,这个是python版的,还有很多种版本

codecs:一个python库,用来转码的

Counter:一个python库工具,用来做统计的

一些杂脚本

gbk2utf8

网上下载些文本文件,很多都是在win上写的,win上一般默认保存为gbk。这样在Linux上打开都是乱码,所以上网找了段代码自己改。

#encoding=utf-8

'''

/*@version: 0.1

* @author: Bubao

* @contact: asd565586630@gmail.com

* @time: 2017-07-13 00:22:00

*/

'''

import codecs

# gbk转utf8脚本

def ReadFile(filePath,encoding="gb18030"):

with codecs.open(filePath,"r",encoding) as f:

return f.read()

def WriteFile(filePath,u,encoding="utf-8"):

with codecs.open(filePath,"w",encoding) as f:

f.write(u)

def UTF8_2_GBK(src,dst):

content = ReadFile(src,encoding="gb18030")

WriteFile(dst,content,encoding="utf-8")

UTF8_2_GBK("./in.txt","./out.txt")

之前是用node版的结巴写的分词,后来因为py比较容易写统计,就换py写分词了。留下这段代码以后需要再看看咯

/*@version: 0.1

* @author: Bubao

* @contact: asd565586630@gmail.com

* @time: 2017-07-13 00:22:00

*/

var nodejieba = require("nodejieba")

var fs = require("fs")

var data = fs.readFileSync("./4.txt", "utf-8")

nodejieba.load({

userDict: './dict.utf8',

})

var result = nodejieba.extract(data, 100);

var a = {

"fen": []

}

let j = 0

for (let i = 0; i < result.length; i++) {

if (result[i].tag !== "uj" && result[i].tag !== "zg" && result[i].tag !== "x") {

a.fen[j] = {

"word": "1",

"tag": "2"

};

a.fen[j].word = result[i].word;

a.fen[j].tag = result[i].tag;

fs.writeFileSync("./5.txt", JSON.stringify(a), 'utf8')

j++

}

}

console.log(a);

因为弄分词的原因,想找一下专业名词,就跑到搜狗输入法的词库下载词包,发现这个格式我解码不了,上github找了别人的脚本(其实我并不知道这段代码是谁写的)。

#!/usr/bin/python

# -*- coding: utf-8 -*-

import struct

import sys

import binascii

import pdb

#搜狗的scel词库就是保存的文本的unicode编码,每两个字节一个字符(中文汉字或者英文字母)

#找出其每部分的偏移位置即可

#主要两部分

#1.全局拼音表,貌似是所有的拼音组合,字典序

# 格式为(index,len,pinyin)的列表

# index: 两个字节的整数 代表这个拼音的索引

# len: 两个字节的整数 拼音的字节长度

# pinyin: 当前的拼音,每个字符两个字节,总长len

#

#2.汉语词组表

# 格式为(same,py_table_len,py_table,{word_len,word,ext_len,ext})的一个列表

# same: 两个字节 整数 同音词数量

# py_table_len: 两个字节 整数

# py_table: 整数列表,每个整数两个字节,每个整数代表一个拼音的索引

#

# word_len:两个字节 整数 代表中文词组字节数长度

# word: 中文词组,每个中文汉字两个字节,总长度word_len

# ext_len: 两个字节 整数 代表扩展信息的长度,好像都是10

# ext: 扩展信息 前两个字节是一个整数(不知道是不是词频) 后八个字节全是0

#

# {word_len,word,ext_len,ext} 一共重复same次 同音词 相同拼音表

#拼音表偏移,

startPy = 0x1540;

#汉语词组表偏移

startChinese = 0x2628;

#全局拼音表

GPy_Table ={}

#解析结果

#元组(词频,拼音,中文词组)的列表

GTable = []

def byte2str(data):

'''''将原始字节码转为字符串'''

i = 0;

length = len(data)

ret = u''

while i < length:

x = data[i] + data[i+1]

t = unichr(struct.unpack('H',x)[0])

if t == u'r':

ret += u'n'

elif t != u' ':

ret += t

i += 2

return ret

#获取拼音表

def getPyTable(data):

if data[0:4] != "x9Dx01x00x00":

return None

data = data[4:]

pos = 0

length = len(data)

while pos < length:

index = struct.unpack('H',data[pos]+data[pos+1])[0]

#print index,

pos += 2

l = struct.unpack('H',data[pos]+data[pos+1])[0]

#print l,

pos += 2

py = byte2str(data[pos:pos+l])

#print py

GPy_Table[index]=py

pos += l

#获取一个词组的拼音

def getWordPy(data):

pos = 0

length = len(data)

ret = u''

while pos < length:

index = struct.unpack('H',data[pos]+data[pos+1])[0]

ret += GPy_Table[index]

pos += 2

return ret

#获取一个词组

def getWord(data):

pos = 0

length = len(data)

ret = u''

while pos < length:

index = struct.unpack('H',data[pos]+data[pos+1])[0]

ret += GPy_Table[index]

pos += 2

return ret

#读取中文表

def getChinese(data):

#import pdb

#pdb.set_trace()

pos = 0

length = len(data)

while pos < length:

#同音词数量

same = struct.unpack('H',data[pos]+data[pos+1])[0]

#print '[same]:',same,

#拼音索引表长度

pos += 2

py_table_len = struct.unpack('H',data[pos]+data[pos+1])[0]

#拼音索引表

pos += 2

py = getWordPy(data[pos: pos+py_table_len])

#中文词组

pos += py_table_len

for i in xrange(same):

#中文词组长度

c_len = struct.unpack('H',data[pos]+data[pos+1])[0]

#中文词组

pos += 2

word = byte2str(data[pos: pos + c_len])

#扩展数据长度

pos += c_len

ext_len = struct.unpack('H',data[pos]+data[pos+1])[0]

#词频

pos += 2

count = struct.unpack('H',data[pos]+data[pos+1])[0]

#保存

GTable.append((count,py,word))

#到下个词的偏移位置

pos += ext_len

def deal(file_name):

print '-'*60

f = open(file_name,'rb')

data = f.read()

f.close()

if data[0:12] !="x40x15x00x00x44x43x53x01x01x00x00x00":

print "确认你选择的是搜狗(.scel)词库?"

sys.exit(0)

#pdb.set_trace()

print "词库名:" ,byte2str(data[0x130:0x338])#.encode('GB18030')

print "词库类型:" ,byte2str(data[0x338:0x540])#.encode('GB18030')

print "描述信息:" ,byte2str(data[0x540:0xd40])#.encode('GB18030')

print "词库示例:",byte2str(data[0xd40:startPy])#.encode('GB18030')

getPyTable(data[startPy:startChinese])

getChinese(data[startChinese:])

if __name__ == '__main__':

#将要转换的词库添加在这里就可以了

o = ['1.scel',

]

for f in o:

deal(f)

#保存结果

f = open('sougou.txt','w')

for count,py,word in GTable:

#GTable保存着结果,是一个列表,每个元素是一个元组(词频,拼音,中文词组),有需要的话可以保存成自己需要个格式

#我没排序,所以结果是按照上面输入文件的顺序

f.write( unicode('{%(count)s}' %{'count':count}+py+' '+ word).encode('utf8') )#最终保存文件的编码GB18030,可以自给改

f.write('n')

f.close()

这是Ruby写的,颜文字导出

这是python写的,到处成mmseg格式,据说这个可以用来做中文分词,以后再看看吧。

还是个scel2txt小工具。

最后

以上就是超级墨镜为你收集整理的python分词统计词频_基于结巴分词做的全文分词统计词频小脚本的全部内容,希望文章能够帮你解决python分词统计词频_基于结巴分词做的全文分词统计词频小脚本所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(49)

评论列表共有 0 条评论

立即
投稿
返回
顶部