文章主要介绍的是koren 08年发的论文[1], 2.3部分内容(其余部分会陆续补充上来)。
koren论文中用到netflix 数据集, 过于大, 在普通的pc机上运行时间很长很长。考虑到写文章目地主要是已介绍总结方法为主,所以采用Movielens 数据集。
变量介绍
部分变量介绍可以参看《基于baseline和stochastic gradient descent的个性化推荐系统》
文章中,将介绍两种方法实现的简易个性化推荐系统,用RMSE评价标准,对比这两个方法的实验结果。
(1) svd + stochstic gradient descent 方法来实现系统。
(2) baseline + svd + stochastic gradient descent 方法来实现系统。
注:
方法1: svd + stochastic gradient descent
svd:
cost function:
梯度变化(利用stochastic gradient descent算法使上述的目标函数值,在设定的迭代次数内,降到最小)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122''''' Created on Dec 13, 2012 @Author: Dennis Wu @E-mail: hansel.zh@gmail.com @Homepage: http://blog.csdn.net/wuzh670 Data set download from : http://www.grouplens.org/system/files/ml-100k.zip ''' from operator import itemgetter, attrgetter from math import sqrt import random def load_data(): train = {} test = {} filename_train = 'data/ua.base' filename_test = 'data/ua.test' for line in open(filename_train): (userId, itemId, rating, timestamp) = line.strip().split('t') train.setdefault(userId,{}) train[userId][itemId] = float(rating) for line in open(filename_test): (userId, itemId, rating, timestamp) = line.strip().split('t') test.setdefault(userId,{}) test[userId][itemId] = float(rating) return train, test def calMean(train): stat = 0 num = 0 for u in train.keys(): for i in train[u].keys(): stat += train[u][i] num += 1 mean = stat*1.0/num return mean def initialFeature(feature, userNum, movieNum): random.seed(0) user_feature = {} item_feature = {} i = 1 while i < (userNum+1): si = str(i) user_feature.setdefault(si,{}) j = 1 while j < (feature+1): sj = str(j) user_feature[si].setdefault(sj,random.uniform(0,1)) j += 1 i += 1 i = 1 while i < (movieNum+1): si = str(i) item_feature.setdefault(si,{}) j = 1 while j < (feature+1): sj = str(j) item_feature[si].setdefault(sj,random.uniform(0,1)) j += 1 i += 1 return user_feature, item_feature def svd(train, test, userNum, movieNum, feature, user_feature, item_feature): gama = 0.02 lamda = 0.3 slowRate = 0.99 step = 0 preRmse = 1000000000.0 nowRmse = 0.0 while step < 100: rmse = 0.0 n = 0 for u in train.keys(): for i in train[u].keys(): pui = 0 k = 1 while k < (feature+1): sk = str(k) pui += user_feature[u][sk] * item_feature[i][sk] k += 1 eui = train[u][i] - pui rmse += pow(eui,2) n += 1 k = 1 while k < (feature+1): sk = str(k) user_feature[u][sk] += gama*(eui*item_feature[i][sk] - lamda*user_feature[u][sk]) item_feature[i][sk] += gama*(eui*user_feature[u][sk] - lamda**item_feature[i][sk]) k += 1 nowRmse = sqrt(rmse*1.0/n) print 'step: %d Rmse: %s' % ((step+1), nowRmse) if (nowRmse < preRmse): preRmse = nowRmse gama *= slowRate step += 1 return user_feature, item_feature def calRmse(test, user_feature, item_feature, feature): rmse = 0.0 n = 0 for u in test.keys(): for i in test[u].keys(): pui = 0 k = 1 while k < (feature+1): sk = str(k) pui += user_feature[u][sk] * item_feature[i][sk] k += 1 eui = pui - test[u][i] rmse += pow(eui,2) n += 1 rmse = sqrt(rmse*1.0 / n) return rmse; if __name__ == "__main__": # load data train, test = load_data() print 'load data success' # initial user and item feature, respectly user_feature, item_feature = initialFeature(100, 943, 1682) print 'initial user and item feature, respectly success' # baseline + svd + stochastic gradient descent user_feature, item_feature = svd(train, test, 943, 1682, 100, user_feature, item_feature) print 'svd + stochastic gradient descent success' # compute the rmse of test set print 'the Rmse of test test is: %s' % calRmse(test, user_feature, item_feature, 100)
方法2:baseline + svd + stochastic gradient descent
baseline + svd:
object function:
梯度变化(利用stochastic gradient descent算法使上述的目标函数值,在设定的迭代次数内,降到最小)
方法2: 具体代码实现
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172''''' Created on Dec 13, 2012 @Author: Dennis Wu @E-mail: hansel.zh@gmail.com @Homepage: http://blog.csdn.net/wuzh670 Data set download from : http://www.grouplens.org/system/files/ml-100k.zip ''' from operator import itemgetter, attrgetter from math import sqrt import random def load_data(): train = {} test = {} filename_train = 'data/ua.base' filename_test = 'data/ua.test' for line in open(filename_train): (userId, itemId, rating, timestamp) = line.strip().split('t') train.setdefault(userId,{}) train[userId][itemId] = float(rating) for line in open(filename_test): (userId, itemId, rating, timestamp) = line.strip().split('t') test.setdefault(userId,{}) test[userId][itemId] = float(rating) return train, test def calMean(train): stat = 0 num = 0 for u in train.keys(): for i in train[u].keys(): stat += train[u][i] num += 1 mean = stat*1.0/num return mean def initialBias(train, userNum, movieNum, mean): bu = {} bi = {} biNum = {} buNum = {} u = 1 while u < (userNum+1): su = str(u) for i in train[su].keys(): bi.setdefault(i,0) biNum.setdefault(i,0) bi[i] += (train[su][i] - mean) biNum[i] += 1 u += 1 i = 1 while i < (movieNum+1): si = str(i) biNum.setdefault(si,0) if biNum[si] >= 1: bi[si] = bi[si]*1.0/(biNum[si]+25) else: bi[si] = 0.0 i += 1 u = 1 while u < (userNum+1): su = str(u) for i in train[su].keys(): bu.setdefault(su,0) buNum.setdefault(su,0) bu[su] += (train[su][i] - mean - bi[i]) buNum[su] += 1 u += 1 u = 1 while u < (userNum+1): su = str(u) buNum.setdefault(su,0) if buNum[su] >= 1: bu[su] = bu[su]*1.0/(buNum[su]+10) else: bu[su] = 0.0 u += 1 return bu,bi def initialFeature(feature, userNum, movieNum): random.seed(0) user_feature = {} item_feature = {} i = 1 while i < (userNum+1): si = str(i) user_feature.setdefault(si,{}) j = 1 while j < (feature+1): sj = str(j) user_feature[si].setdefault(sj,random.uniform(0,1)) j += 1 i += 1 i = 1 while i < (movieNum+1): si = str(i) item_feature.setdefault(si,{}) j = 1 while j < (feature+1): sj = str(j) item_feature[si].setdefault(sj,random.uniform(0,1)) j += 1 i += 1 return user_feature, item_feature def svd(train, test, mean, userNum, movieNum, feature, user_feature, item_feature, bu, bi): gama = 0.02 lamda = 0.3 slowRate = 0.99 step = 0 preRmse = 1000000000.0 nowRmse = 0.0 while step < 100: rmse = 0.0 n = 0 for u in train.keys(): for i in train[u].keys(): pui = 1.0 * (mean + bu[u] + bi[i]) k = 1 while k < (feature+1): sk = str(k) pui += user_feature[u][sk] * item_feature[i][sk] k += 1 eui = train[u][i] - pui rmse += pow(eui,2) n += 1 bu[u] += gama * (eui - lamda * bu[u]) bi[i] += gama * (eui - lamda * bi[i]) k = 1 while k < (feature+1): sk = str(k) user_feature[u][sk] += gama*(eui*item_feature[i][sk] - lamda*user_feature[u][sk]) item_feature[i][sk] += gama*(eui*user_feature[u][sk] - lamda*item_feature[i][sk]) k += 1 nowRmse = sqrt(rmse*1.0/n) print 'step: %d Rmse: %s' % ((step+1), nowRmse) if (nowRmse < preRmse): preRmse = nowRmse gama *= slowRate step += 1 return user_feature, item_feature, bu, bi def calRmse(test, bu, bi, user_feature, item_feature, mean, feature): rmse = 0.0 n = 0 for u in test.keys(): for i in test[u].keys(): pui = 1.0 * (mean + bu[u] + bi[i]) k = 1 while k < (feature+1): sk = str(k) pui += user_feature[u][sk] * item_feature[i][sk] k += 1 eui = pui - test[u][i] rmse += pow(eui,2) n += 1 rmse = sqrt(rmse*1.0 / n) return rmse; if __name__ == "__main__": # load data train, test = load_data() print 'load data success' # Calculate overall mean rating mean = calMean(train) print 'Calculate overall mean rating success' # initial user and item Bias, respectly bu, bi = initialBias(train, 943, 1682, mean) print 'initial user and item Bias, respectly success' # initial user and item feature, respectly user_feature, item_feature = initialFeature(100, 943, 1682) print 'initial user and item feature, respectly success' # baseline + svd + stochastic gradient descent user_feature, item_feature, bu, bi = svd(train, test, mean, 943, 1682, 100, user_feature, item_feature, bu, bi) print 'baseline + svd + stochastic gradient descent success' # compute the rmse of test set print 'the Rmse of test test is: %s' % calRmse(test, bu, bi, user_feature, item_feature, mean, 100)
实验参数设置:
(gama = 0.02 lamda =0.3)
feature = 100 maxstep = 100 slowRate = 0.99(随着迭代次数增加,梯度下降幅度越来越小)
方法1结果:Rmse of test set : 1.00422938926
方法2结果:Rmse of test set : 0.963661477881
REFERENCES
1.Y. Koren. Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model. Proc. 14th ACM SIGKDD Int. Conf. On Knowledge Discovery and Data Mining (KDD’08), pp. 426–434, 2008.
2. Y.Koren. The BellKor Solution to the Netflix Grand Prize 2009
最后
以上就是务实水蜜桃最近收集整理的关于基于baseline、svd和stochastic gradient descent的个性化推荐系统的全部内容,更多相关基于baseline、svd和stochastic内容请搜索靠谱客的其他文章。
发表评论 取消回复