我是靠谱客的博主 伶俐睫毛,最近开发中收集的这篇文章主要介绍JAVA 多线程,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

一、进程与线程


个人所理解进程与线程的关系,如图:


        进程是资源的拥有者,所以切换中系统要付出较大的时空开销,如图中A-->B所占用的时间片段。因此导致系统中的进程数和切换频率不宜过高,限制了并发程度的提高,而线程不属于资源被分配的单位,只是共享所属进程的资源,因此可以轻装上阵,线程间的切换开销要比进程少得多,由于资源是共享的所以进程间的通信也比进程间通信容易得多。


二、两种多线程的方式


1.继承Thread类复写run方法

public class ThreadDemo  {
	public static void main(String[] args) {
		MyThread thread1=new MyThread();
		//thread1.setName("这里定义线程名");
		thread1.start();//启动该线程 注:此时共有main和thread1两个线程
		
		
	}
}
class MyThread extends Thread{
	@Override
	public void run() {
		// TODO Auto-generated method stub
		//super.run();
		
		System.out.println("这里写线程所要执行的代码");
		System.out.println(Thread.currentThread().getName()); //Thread.currentThread() 获取当前线程对向
	}
//	public MyThread(String name){
//		super.setName(name);初始化同时命名线程
//	}
}


2.实现Runnable接口

public class ThreadDemo {
	public static void main(String[] args) {
		MyRunnable runnable = new MyRunnable();
		Thread thread = new Thread(runnable);
		thread.setName("这里定义线程名");
		thread.start();// 启动该线程 注:此时共有main和thread两个线程

	}
}

class MyRunnable implements Runnable {

	@Override
	public void run() {
		// TODO Auto-generated method stub
		System.out.println("这里写线程所要执行的代码");
	}

}


三、两种方式的比较(以售票为例,多个线程同时对Ticket类的实例对象进行操作)


1.以继承Thread类方式

        如果以这种方式实现多线程操作共享数据,需要将共享资源作为继承于Thread的类成员变量,并提供set方法或在构造方法中予以赋值,而每一个Thread的实例set进同一个资源的载体。如代码中:MyThread继承Thread类,多个MyThread的实例即多个线程操作Ticket的一个实例,则将Ticket类作为MyThread的成员

class Ticket {
	private int num;//定义票数

	public Ticket(int num) {
		this.num = num;
	}

	/**
	 * 提供售票方法,每次执行票数减一
	 * @return 
	 */
	public synchronized void sell() {
		if (num > 0)
		System.out.println(Thread.currentThread().getName() + "售出一张,剩余" + --num);
		else
		System.out.println("对不起,票已售完");
	}
	

	public int getNum() {
		return num;
	}
}

class MyThread extends Thread {
	private Ticket ticket;//将要操作的资源类作为成员变量,并提供set方法,将实例对象set进来

	public void setTicket(Ticket ticket) {
		this.ticket = ticket;
	}

	@Override
	public void run() {
		// TODO Auto-generated method stub
		while (true) {
			synchronized (ticket) {
				if (ticket.getNum() == 0)
					break;
				ticket.sell();
			}
		}
	}
}

public class ThreadDemo {
	public static void main(String[] args) throws InterruptedException {

		Ticket ticket = new Ticket(10000);
		MyThread thread1 = new MyThread();
		MyThread thread2 = new MyThread();
		MyThread thread3 = new MyThread();
		thread1.setTicket(ticket);
		thread2.setTicket(ticket);
		thread3.setTicket(ticket);// 这里三个新创建的并发线程都要set进同一个资源(同一个实例对象)
		thread1.start();
		thread2.start();
		thread3.start();
		
	}
}

2.以实现Runnable接口的方式(列举多种写法)

  • 在实现Runnable接口的同时继承要操作的共享资源类,如代码中新建MyRunnable extend Ticket implements,但Ticket中票数num要设为protect
class Ticket {
	protected int num;// 定义票数

	public Ticket(int num) {
		this.num = num;
	}

	/**
	 * 提供售票方法,每次执行票数减一
	 * 
	 * @return
	 */
	public synchronized void sell() {
		if (num > 0)
			System.out.println(Thread.currentThread().getName() + "售出一张,剩余" + --num);
		else
			System.out.println("对不起,票已售完");
	}

	public int getNum() {
		return num;
	}
}

class MyRunnable extends Ticket implements Runnable{

	public MyRunnable(int num) {
		super(num);
		// TODO Auto-generated constructor stub
	}

	@Override
	public void run() {
		// TODO Auto-generated method stub
		while(true){
			synchronized (this) {
				if(num==0)break;
				sell();
			}
		}
	}
}
public class ThreadDemo{
	public static void main(String[] args) {
		Runnable myRunnable=new MyRunnable(10000);
		Thread thread1=new Thread(myRunnable);
		Thread thread2=new Thread(myRunnable);
		Thread thread3=new Thread(myRunnable);
		thread1.start();
		thread2.start();
		thread3.start();
		
	}
}

  •  仅实现Runnable接口不继承资源类,而是将资源类作为成员变量set或构造函数中赋值
class Ticket {
	privateint num;// 定义票数

	public Ticket(int num) {
		this.num = num;
	}

	/**
	 * 提供售票方法,每次执行票数减一
	 * 
	 * @return
	 */
	public synchronized void sell() {
		if (num > 0)
			System.out.println(Thread.currentThread().getName() + "售出一张,剩余" + --num);
		else
			System.out.println("对不起,票已售完");
	}

	public int getNum() {
		return num;
	}
}

class MyRunnable implements Runnable{
	private Ticket ticket;

	public void setTicket(Ticket ticket) {
		this.ticket = ticket;
	}
	public MyRunnable(Ticket ticket) {
		// TODO Auto-generated constructor stub
		this.ticket=ticket;
	}
	@Override
	public void run() {
		// TODO Auto-generated method stub
		while(true){
			synchronized (this) {
				if(ticket.getNum()==0)break;
				ticket.sell();
			}
		}
	}
}
public class ThreadDemo{
	public static void main(String[] args) {
		Runnable myRunnable = new MyRunnable(new Ticket(10000));
		Thread thread1 = new Thread(myRunnable);
		Thread thread2 = new Thread(myRunnable);
		Thread thread3 = new Thread(myRunnable);
		thread1.start();
		thread2.start();
		thread3.start();

	}
}

  • 直接用共享资源类去实现Runnable接口,这种方法还可以继续继承其他类
class Ticket implements Runnable {
	privateint num;// 定义票数

	public Ticket(int num) {
		this.num = num;
	}

	/**
	 * 提供售票方法,每次执行票数减一
	 * 
	 * @return
	 */
	public synchronized void sell() {
		if (num > 0)
			System.out.println(Thread.currentThread().getName() + "售出一张,剩余" + --num);
		else
			System.out.println("对不起,票已售完");
	}

	public int getNum() {
		return num;
	}

	@Override
	public void run() {
		// TODO Auto-generated method stub
		while (true) {
			synchronized (this) {
				if (num == 0) break;
				sell();
			}
		}
	}
}

public class ThreadDemo {
	public static void main(String[] args) {
		Runnable ticket = new Ticket(10000);
		Thread thread1 = new Thread(ticket);
		Thread thread2 = new Thread(ticket);
		Thread thread3 = new Thread(ticket);
		thread1.start();
		thread2.start();
		thread3.start();

	}
}

        由此可见,实现Runnable这种方式除了可以避免java单继承的局限外,写法多变,更为灵活,可以根据实际情况采取相应的方法,在实际开发中也更为常用。

四、线程的状态及转换



  • 初始化状态:调用 new方法产生一个线程对象后、调用 start 方法前所处的状态。
  • 就绪状态:当线程有资格运行,但调度程序还没有把它选定为运行线程时线程所处的状态。当start()方法调用时,线程首先进入就绪状态。在线程运行之后或者从阻塞、等待或睡眠状态回来后,也返回到就绪状态。多个线程间对cpu的争夺,都是以该状态为前提,即只有就绪状态的线程才有资格争取cpu的执行。
  • 运行状态:线程调度程序从就绪线程池中选择一个线程执行后所处的状态。这也是线程进入运行状态的唯一一种方式。
  • 等待/阻塞/睡眠状态:这是线程有资格运行时它所处的状态但非就绪。实际上这个三状态组合为一种,其共同点是:线程仍旧是活的,但是当前没有条件运行。换句话说,它是可运行的,但是如果某件事件出现,他可能返回到可运行状态。
  • 消亡状态:当线程的run()方法完成时的状态。

五、常用的进程控制语句

1.Thread.sleep()
class MyRunnable implements Runnable{
	@Override
	public void run() {
		// TODO Auto-generated method stub
		try {
			Thread.sleep(1000);
			System.out.println("Thread.sleep(这里是毫秒)");
		} catch (InterruptedException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		}
	}
}
2.设置优先级
public class ThreadDemo  {
	public static void main(String[] args) throws Exception{
		Runnable myrRunnable=new MyRunnable();
		Thread thread1=new Thread(myrRunnable);
		Thread thread2=new Thread(myrRunnable);
		thread1.setPriority(7);//这里可设优先级1-10代表由低到高 
		thread1.start();
		thread2.start();
	}
}
线程默认优先级是5,Thread类中有三个常量,定义线程优先级范围:
static int MAX_PRIORITY 线程可以具有的最高优先级。 
static int MIN_PRIORITY 线程可以具有的最低优先级。 
static int NORM_PRIORITY 分配给线程的默认优先级。
3.线程让步yield()
    之前提到所有可争夺cpu执行权的线程都应该是就绪状态,但是如果正在执行的线程一只占用cpu不主动释放,会导致就绪线程吃内的线程在一段时间内得不到执行,而该时间内总是由运行着的线程霸占。结果是cpu在一个线程上处理一大批数据后,才切换到另一个线程上去。而yield()方法则是让当前线程主动放权,即有运行状态主动转为就绪状态,这样线程切换的频率大大提高,效果是cpu每在一个线程上处理几条数据就切换到另一个线程。


4.join()

Thread的非静态方法join()让一个线程B“加入”到另外一个线程A的尾部。在A执行完毕之前,B不能工作。下面是一个两个线程向同一个数组中添加元素的例子,要求两线程向该数组添加结束后,主线程再打印该数组的元素。
public class JoinDemo{
	public static void main(String[] args) throws Exception {
		int[] nums = new int[6];
		Add add = new Add(nums);
		Thread thread1 = new Thread(add);
		Thread thread2 = new Thread(add);
		thread1.setName("线程1");
		thread2.setName("线程2");
		thread1.start();
		thread2.start();//此时共main、thread1、thread2三个线程
		thread1.join();//main读到这条与语句后,main只有在thread1结束后再运行(实际是main的线程栈追加到thread1的末尾)。此时只有thread1和thread2在运行
		thread2.join();//main方法读这条语句时刻,运行的语句有main、thread2,读完该条语句后,只有thread2运行结束后才执行main
		System.out.println(Arrays.toString(nums));//此时只有main线程
	}
}

class Add implements Runnable {

	private int[] nums;
	
	@Override
	public  void run() {
		// TODO Auto-generated method stub
		 
		try {
			mainDo();
		} catch (InterruptedException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		}
	}

	private void mainDo() throws InterruptedException {
		for (int i = 0; i < 3; i++) {
			synchronized (this) {
			for (int j = 0; j < nums.length; j++) {
				
					Thread.sleep(new Random().nextInt(500));
					if (nums[j] == 0) {
						nums[j] = new Random().nextInt(999) + 1;
						System.out.println(Thread.currentThread().getName() + "向num[" + j + "]添加" + nums[j]);
						break;
					}
				}
			}
		}
	}

	public Add(int[] nums) {

		this.nums = nums;

	}
 
}
通过以上11行和12行的语句使得打印结果如下:


而不使用join方法结果是在添加数据前打印出空数组




六、线程安全

依然以常见的售票为例,这里设票数只有一张,两个线程出售,运行如下代码:
class Ticket {
	private int num;//定义票数

	public Ticket(int num) {
		this.num = num;
	}

	/**
	 * 提供售票方法,每次执行票数减一
	 * @return 
	 */
	public void sell() {
		if (num > 0)
		System.out.println(Thread.currentThread().getName() + "售出一张,剩余" + --num);
	}
	

	public int getNum() {
		return num;
	}
}

class MyThread extends Thread {
	private Ticket ticket;//将要操作的资源类作为成员变量,并提供set方法,将实例对象set进来

	public void setTicket(Ticket ticket) {
		this.ticket = ticket;
	}

	@Override
	public void run() {
		// TODO Auto-generated method stub
		while (true) {		
				if (ticket.getNum() <= 0)
					break;
				ticket.sell();
				Thread.yield();
		}
	}
}
运行结果:

出现-1张余票的原因是两个线程同时在操作共享数据票数,然而在A线程执行一半,另一个进程抢占到cpu执行权,这是调度程序会对A发出中断,A响应中断,将当前全部状态进栈,接下来执行线程B,线程B又对票数进行修改,当A线程再次执行时,将之前栈内状态出栈,恢复被中断前的状态继续执行,结果就会出现这种情况。解决办法是在一个线程对共享数据读或写的过程中不被中断。

线程同步的方法:


1.同步代码块,代码块内的语句执行过程不会被中断
synchronized(obj)
{ //obj表示同步监视器,是同一个同步对象,该例中可以将共享资源ticket作为监视器,个人理解要保证同步的线程监视器对象必须是同一个
/**.....
TODO SOMETHING
*/
}
2.方法的同步,加入修饰符synchronized ,监视器为this,格式如下,
synchronized 返回值类型 方法名(参数列表){
/**.....
TODO SOMETHING
*/
}
注:由于在调用静态方法时,对象实例不一定被创建,因此,就不能使用this作为监视器,而是该静态方法所属类的字节码。
常见的延迟单例模式中监视器就为Single.class

class Single {
	private Single() {
		// TODO Auto-generated constructor stub
	}

	private static Single instance = null;

	public static Single getInstance() {
		if (instance == null) {
			synchronized (Single.class) {
				if (instance == null)
					instance = new Single();
			}

		}
		return instance;
	}

}
3.ReentrantLock代替 synchronized 

class MyRunnable extends Ticket implements Runnable{
	ReentrantLock lock=new ReentrantLock();
	public MyRunnable(int num) {
		super(num);
		// TODO Auto-generated constructor stub
	}

	@Override
	public void run() {
		// TODO Auto-generated method stub
		while(true){
			lock.lock();
				if(num==0)break;
				sell();
			lock.unlock();
		}
	}
}


七、关于死锁

关于汤子瀛版操作系统中描述的哲学家进餐问题,五位哲学家围坐在圆桌进餐,但每人仅右手边放置一只筷子,哲学家只有在同时获得两只筷子时才会进餐,进餐完毕释放两只筷子,不进餐时进行思考(等待),若有一位哲学家获得一只筷子,不会主动释放而是等待另一只筷子(请求保持),哲学家间不可抢夺筷子。如此循环,就有可能出现五个人手中各有一只筷子,在等待另一只筷子,造成再也无人进餐。这种情况就是死锁。

进程和线程发生死锁的必要条件:

对资源的互斥使用、不可强占、请求和保持、循环等待,当满足这四个条件时就有可能发生死锁,但是只要破坏其中任意一个条件就能避免思索。

Java多线程中出现死锁的例子(这里的资源指的是同步时的监视器对象,同步代码块使用监视器对象就是占有该资源):

class Resource {

	public static Object object1 = new Object();
	public static Object object2 = new Object();
	public static Object object3 = new Object();
	public static Object object4 = new Object();

}

class MyRunnable1 implements Runnable {
	@Override
	public void run() {
		// TODO Auto-generated method stub
		while (true) {
			synchronized (Resource.object1) {
				try {
					Thread.sleep(1000);
				} catch (InterruptedException e) {
					// TODO Auto-generated catch block
					e.printStackTrace();
				}
				synchronized (Resource.object2) {
					System.out.println("执行MyRunnable1.fun()");
				}
			}
		}
	}
}

class MyRunnable2 implements Runnable {
	@Override
	public void run() {
		// TODO Auto-generated method stub
		while (true) {
			synchronized (Resource.object2) {
				try {
					Thread.sleep(1000);
				} catch (InterruptedException e) {
					// TODO Auto-generated catch block
					e.printStackTrace();
				}
				synchronized (Resource.object1) {
					System.out.println("执行MyRunnable2.fun()");
				}
			}
		}
	}
}

public class ThreadDemo {
	public static void main(String[] args) {
		Runnable runnable1 = new MyRunnable1();
		Runnable runnable2 = new MyRunnable2();
		Thread thread1 = new Thread(runnable1);
		Thread thread2 = new Thread(runnable2);
		thread1.start();
		thread2.start();
	}
}
关于避免死锁,个人理解:对于上述代码中出现了thread1和thread2互斥使用资源object1和object2,并且相互等待(循环等待)对方线程占有的资源(锁),同时同步代码块也满足了请求保持和不可抢占。解决办法是可以将object1和object2两个资源(锁)封装成一个对象(整体)(锁)。这样可以避免循环等待。对应哲学家进餐问题中,将两只筷子封装成一套餐具,只有得到一套餐具时才可以进餐,在多线程中也应尽量避免锁的嵌套使用。以免造成循环等待的情况出现。


八、线程通讯

wait():让当前线程放弃监视器进入等待,直到其他线程调用同一个监视器并调用notify()或notifyAll()为止。
notify():唤醒在同一对象监听器中调用wait方法的第一个线程。
notifyAll():唤醒在同一对象监听器中调用wait方法的所有线程。

下面的例子是通过两个线程向一个数组内添加元素,通过线程间的通讯达到一个线程添加一个元素后,另一个线程再添加一个元素如此往复的效果。

import java.util.Arrays;
import java.util.Random;

public class ThreadTest {
	public static void main(String[] args) throws Exception {
		int[] arrary = new int[1000];
		Res res = new Res(arrary, false);
		Runnable r1 = new add1(res);
		Runnable r2 = new add2(res);
		Thread t1 = new Thread(r1);
		Thread t2 = new Thread(r2);
		t1.start();
		t2.start();
		t1.join();
		t2.join();
		//main线程最后打印结果
		System.out.println(Arrays.toString(arrary));

	}

}

/**
 * @author Mr
 * 资源类,封装有数组和线程间通讯的标志位
 */
class Res {
	private int[] array;
	private boolean sign;

	public int[] getArray() {
		return array;
	}

	public void setArray(int[] array) {
		this.array = array;
	}

	public boolean isSign() {
		return sign;
	}

	public void setSign(boolean sign) {
		this.sign = sign;
	}

	public Res(int[] array, boolean sign) {
		// TODO Auto-generated constructor stub
		this.array = array;
		this.sign = sign;
	}
}

/**
 * @author Mr
 *	线程1负责向数组的前半部分添加元素
 */
class add1 implements Runnable {
	private Res res;

	public add1(Res res) {
		// TODO Auto-generated constructor stub
		this.res = res;
	}

	@Override
	public void run() {
		// TODO Auto-generated method stub
		for (int i = 0; i < res.getArray().length / 2; i++) {
			synchronized (res) {
				if (res.isSign())
					try {
						res.wait();
					} catch (InterruptedException e) {
						// TODO Auto-generated catch block
						e.printStackTrace();
					}
				int num = new Random().nextInt(99) + 1;
				res.getArray()[i] = num;
				System.out.println(Thread.currentThread().getName() + "向array["
						+ i + "]添加" + num);
				res.setSign(true);
				res.notify();
			}
		}
	}
}

/**
 * @author Mr
 *	线程2负责向数组的后半部分添加元素
 */
class add2 implements Runnable {

	private Res res;

	public add2(Res res) {
		// TODO Auto-generated constructor stub
		this.res = res;
	}

	@Override
	public void run() {
		// TODO Auto-generated method stub
		for (int i = res.getArray().length / 2; i < res.getArray().length; i++) {
			synchronized (res) {
				if (!res.isSign())
					try {
						res.wait();
					} catch (InterruptedException e) {
						// TODO Auto-generated catch block
						e.printStackTrace();
					}
				int num = new Random().nextInt(99) + 1;
				res.getArray()[i] = num;
				System.out.println(Thread.currentThread().getName() + "向array["
						+ i + "]添加" + num);
				res.setSign(false);
				res.notify();
			}
		}
	}
}

效果如下:


另外在jdk1.5后提供了新的方法以代替锁和wait、notify、notifyall方法,常见的生产者与消费者的例子,其中三个生产者线程,两个消费者线程:

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class ThreadTest{
	public static void main(String[] args) {

		Res res = new Res("豆浆", 0);
		Runnable r1 = new producer(res);
		Runnable r2 = new customer(res);
		Thread t1 = new Thread(r1);
		Thread t2 = new Thread(r1);
		Thread t3 = new Thread(r1);

		Thread t5 = new Thread(r2);
		Thread t6 = new Thread(r2);

		t1.start();
		t2.start();
		t3.start();

		t5.start();
		t6.start();

	}
}

class Res {
	private String name;// 商品(资源)名
	private int no;// 商品编号
	private boolean sign;
	private final Lock lock = new ReentrantLock();
	private Condition condition_con = lock.newCondition();
	private Condition condition_pro = lock.newCondition();

	public Res(String name, int no) {
		// TODO Auto-generated method stub
		this.name = name;
		this.no = no;
	}

	/**
	 * 生产
	 */
	public void pro() {
		lock.lock();
		while (sign) {
			try {
				condition_pro.await();// 生产相关线程wait
			} catch (InterruptedException e) {
				// TODO Auto-generated catch block
				e.printStackTrace();
			}
		}
		System.out.println(Thread.currentThread().getName() + "生产了" + name
				+ ++no);
		sign = true;
		condition_con.signalAll();// 唤起消费相关线程
		lock.unlock();
	}

	/**
	 * 消费
	 */
	public void cus() {
		lock.lock();
		while (!sign) {
			try {
				condition_con.await();// 消费相关线程wait
			} catch (InterruptedException e) {
				// TODO Auto-generated catch block
				e.printStackTrace();
			}
		}
		System.out
				.println(Thread.currentThread().getName() + "消费了" + name + no);
		sign = false;
		condition_pro.signalAll();// 唤起生产相关线程
		lock.unlock();
	}
}

/**
 * @author Mr 生产者
 */
class producer implements Runnable {
	private Res res;

	public producer(Res res) {
		// TODO Auto-generated constructor stub
		this.res = res;
	}

	@Override
	public void run() {
		// TODO Auto-generated method stub
		while (true) {
			res.pro();
		}
	}
}

/**
 * @author Mr 消费者
 */
class customer implements Runnable {
	private Res res;

	public customer(Res res) {
		// TODO Auto-generated constructor stub
		this.res = res;
	}

	@Override
	public void run() {
		// TODO Auto-generated method stub
		while (true) {
			res.cus();
		}
	}
}




最后

以上就是伶俐睫毛为你收集整理的JAVA 多线程的全部内容,希望文章能够帮你解决JAVA 多线程所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(54)

评论列表共有 0 条评论

立即
投稿
返回
顶部