我是靠谱客的博主 正直彩虹,最近开发中收集的这篇文章主要介绍ACM-ICPC 2017 Asia Urumqi: H. Count Numbers(DP+矩阵快速幂优化),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

Now Alice wants to sum up all integers whose digit sum is exactly a^b.

However we all know the number of this kind of integers are unlimited. So she decides to sum up all these numbers

whose each digit is non-zero.

Since the answer could be large, she only needs the remainder when the answer divided by a given integer p.

Input

The input has several test cases and the first line contains the integer t (1t400) which is the number of test cases.

For each test case, a line consisting of three integers a, b (1a,b20) and p (2p10^9) describes the restriction of the digit sum and the given integer p.

Output

For each test case, output a line with the required answer.

Here we provide an explanation of the following sample output. All integers satisfying the restriction in the input are 4,13,31,22,121,112,211 and 1111. The sum of them all is 4 + 13 + 31 + 22 + 121 + 112 + 211 + 1111 = 1625 and that is exactly the sample output.

样例输入

5
2 1 1000000
3 1 1000000
2 2 1000000
3 3 1000000
10 1 1000000

样例输出

13
147
1625
877377
935943

题解:记 F[i]表示数位和为 i 的不含 0 整数有多少个,再记 G[i]表示数位和为 i 的不含 0 整数的和。

那么 F[i] = sum F[i-j]G[i] = sum 10*G[i-j]+j*F[i-j],其中 j 枚举了最低位的数字,并从 1 遍历到 9。不妨同时维护相邻的 9 个位置的值(共 18 个),则可以构造 18 阶矩阵 A,实现它的快速转移。整个问题的答案也对应了 A 的 a^b次幂。可以利用矩阵乘法的结合律实现它的快速计算。

F[8] F[7] F[6] F[5] F[4] F[3] F[2] F[1] F[0] G[8] G[7] G[6] G[5] G[4] G[3] G[2] G[1] G[0]

伴随矩阵A:

1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 3 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 4 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 5 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 6 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 7 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 8 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 10 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 10 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 10 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 10 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 10 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0

考虑到a^b可能非常大,就用了JAVA来写。

import java.util.*;
import java.math.*;
public class Main {
static long MOD;
static class lenka
{
long a[][]=new long[20][20];
lenka()
{
for(int i=0;i<18;i++)
{
for(int j=0;j<18;j++)a[i][j]=0;
}
}
}
static lenka cla(lenka a,lenka b)
{
lenka c=new lenka();
for(int i=0;i<18;i++)
{
for(int j=0;j<18;j++)
{
for(int k=0;k<18;k++)
{
c.a[i][j]+=a.a[i][k]*b.a[k][j]%MOD;
c.a[i][j]%=MOD;
}
}
}
return c;
}
static long POW(BigInteger n)
{
lenka a=new lenka();
lenka res=new lenka();
for(int i=0;i<18;i++)res.a[i][i]=1;
for(int i=0;i<9;i++)
{
a.a[i][0]=1;
a.a[i][9]=i+1;
}
for(int i=1;i<9;i++)
{
a.a[i-1][i]=1;
a.a[i+8][i+9]=1;
}
for(int i=9;i<18;i++)a.a[i][9]=10;
while(n.compareTo(BigInteger.ZERO)>0)
{
if(n.mod(new BigInteger("2")).compareTo(BigInteger.ONE)==0)res=cla(a,res);
a=cla(a,a);
n=n.divide(new BigInteger("2"));
}
long d[]={128,64,32,16,8,4,2,1,1,23817625,2165227,196833,17891,1625,147,13,1,0};
long ans=0;
for(int i=0;i<18;i++)
{
ans+=(d[i]%MOD)*res.a[i][17]%MOD;
ans%=MOD;
}
return ans;
}
public static void main(String args[])
{
Scanner cin=new Scanner(System.in);
int T=cin.nextInt();
while((T--)>0)
{
BigInteger a=cin.nextBigInteger();
int b=cin.nextInt();
MOD=cin.nextLong();
System.out.println(POW(a.pow(b)));
}
}
}

最后

以上就是正直彩虹为你收集整理的ACM-ICPC 2017 Asia Urumqi: H. Count Numbers(DP+矩阵快速幂优化)的全部内容,希望文章能够帮你解决ACM-ICPC 2017 Asia Urumqi: H. Count Numbers(DP+矩阵快速幂优化)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(40)

评论列表共有 0 条评论

立即
投稿
返回
顶部