time limit
2000ms
memory limit
131072KB
For given N , find the smallest r which is no smaller than N such that t(r) is square.
Input Format
The input contains multiple test cases.
The first line of a multiple input is an integer T followed by T input lines.
Each line contains an integer N (1 ≤ N ≤ 10 ) .
For each test case, output the case number first.
Then for given N , output the smallest r .
If this half-consecutive number does not exist, output −1 .
4
1
2
9
50
Case #1: 1
Case #2: 8
Case #3: 49
Case #4: 288
题意:定义自然数的前 i 项和为 half-consecutive;给定一个数N,t(r) 是个平方数,找到不小于N且离N最近的 r 是多少。
思路:数论先打表;
打表完就找到规律了:
i x^2 x
1: 1 1
8: 36- 6
49: 1225- 35
288: 41616- 204
1681: 1413721- 1189
9800: 48024900- 6930
57121: 1631432881- 40391
332928: 55420693056- 235416
1940449: 1882672131025- 1372105
11309768: 63955431761796- 7997214
开放数有规律,每个平方数的开方与对应的i有规律;
代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49#include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; const ll stop=10000000000000000; const int N=1000006; ll chazhi[N],square[N],bianhao[N]; int main() { square[1]=1,square[2]=6; int i; for( i=3;; i++) { square[i]=6*square[i-1]-square[i-2]; if(square[i]>=stop) break; } chazhi[1]=0,chazhi[2]=2,chazhi[3]=14; for(int j=4; j<=i; j++) { chazhi[j]=chazhi[j-1]*6-(chazhi[j-2]-2); } for(int j=1; j<=i; j++) { bianhao[j]=chazhi[j]+square[j]; } // for(int j=1; j<=i; j++) // printf("%I64d ",bianhao[j]); // printf("n"); int t,cas=0; scanf("%d",&t); while(t--) { ll x; scanf("%lld",&x); ll ans=lower_bound(bianhao+1,bianhao+1+i,x)-bianhao; // if(bianhao[ans]>) if(bianhao[ans]>stop) printf("Case #%d: -1n",++cas); else printf("Case #%d: %lldn",++cas,bianhao[ans]); } return 0; }
最后
以上就是顺利皮带最近收集整理的关于2017 ACM-ICPC 亚洲区(乌鲁木齐赛区)网络赛E Half-consecutive Numbers的全部内容,更多相关2017内容请搜索靠谱客的其他文章。
发表评论 取消回复