我是靠谱客的博主 贪玩羊,最近开发中收集的这篇文章主要介绍good article————K’th Smallest/Largest Element in Unsorted Array | Set 2 (Expected Linear Time),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

这是本人在研究leetcode中Median of Two Sorted Arrays一题目的时候看到一篇文章,觉得非常好,其中对快速排序重新实现。

文章来源于http://www.geeksforgeeks.org/这个网站。

We recommend to read following post as a prerequisite of this post.

K’th Smallest/Largest Element in Unsorted Array | Set 1


Given an array and a number k where k is smaller than size of array, we need to find the k’th smallest element in the given array. It is given that ll array elements are distinct.

Examples:

Input: arr[] = {7, 10, 4, 3, 20, 15}
k = 3
Output: 7
Input: arr[] = {7, 10, 4, 3, 20, 15}
k = 4
Output: 10

We have discussed three different solutions here.

In this post method 4 is discussed which is mainly an extension of method 3 (QuickSelect) discussed in the previous post. The idea is to randomly pick a pivot element. To implement randomized partition, we use a random function, rand() to generate index between l and r, swap the element at randomly generated index with the last element, and finally call the standard partition process which uses last element as pivot.

Following is C++ implementation of above Randomized QuickSelect.

// C++ implementation of randomized quickSelect
#include<iostream>
#include<climits>
#include<cstdlib>
using namespace std;
 
int randomPartition( int arr[], int l, int r);
 
// This function returns k'th smallest element in arr[l..r] using
// QuickSort based method.  ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
int kthSmallest( int arr[], int l, int r, int k)
{
     // If k is smaller than number of elements in array
     if (k > 0 && k <= r - l + 1)
     {
         // Partition the array around a random element and
         // get position of pivot element in sorted array
         int pos = randomPartition(arr, l, r);
 
         // If position is same as k
         if (pos-l == k-1)
             return arr[pos];
         if (pos-l > k-1)  // If position is more, recur for left subarray
             return kthSmallest(arr, l, pos-1, k);
 
         // Else recur for right subarray
         return kthSmallest(arr, pos+1, r, k-pos+l-1);
     }
 
     // If k is more than number of elements in array
     return INT_MAX;
}
 
void swap( int *a, int *b)
{
     int temp = *a;
     *a = *b;
     *b = temp;
}
 
// Standard partition process of QuickSort().  It considers the last
// element as pivot and moves all smaller element to left of it and
// greater elements to right. This function is used by randomPartition()
int partition( int arr[], int l, int r)
{
     int x = arr[r], i = l;
     for ( int j = l; j <= r - 1; j++)
     {
         if (arr[j] <= x)
         {
             swap(&arr[i], &arr[j]);
             i++;
         }
     }
     swap(&arr[i], &arr[r]);
     return i;
}
 
// Picks a random pivot element between l and r and partitions
// arr[l..r] arount the randomly picked element using partition()
int randomPartition( int arr[], int l, int r)
{
     int n = r-l+1;
     int pivot = rand () % n;
     swap(&arr[l + pivot], &arr[r]);
     return partition(arr, l, r);
}
 
// Driver program to test above methods
int main()
{
     int arr[] = {12, 3, 5, 7, 4, 19, 26};
     int n = sizeof (arr)/ sizeof (arr[0]), k = 3;
     cout << "K'th smallest element is " << kthSmallest(arr, 0, n-1, k);
     return 0;
}

Output:

K'th smallest element is 5 

Time Complexity: 
The worst case time complexity of the above solution is still O(n2). In worst case, the randomized function may always pick a corner element. The expected time complexity of above randomized QuickSelect is Θ(n), see CLRS book or MIT video lecture for proof. The assumption in the analysis is, random number generator is equally likely to generate any number in the input range.

Sources:
MIT Video Lecture on Order Statistics, Median
Introduction to Algorithms by Clifford Stein, Thomas H. Cormen, Charles E. Leiserson, Ronald L.

This article is contributed by Shivam. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

          

Related Topics:

  • K’th Smallest/Largest Element in Unsorted Array | Set 1
  • Time complexity of insertion sort when there are O(n) inversions?
  • How to check if two given sets are disjoint?
  • Minimum Number of Platforms Required for a Railway/Bus Station
  • Find the closest pair from two sorted arrays
  • Print all elements in sorted order from row and column wise sorted matrix
  • Length of the largest subarray with contiguous elements | Set 1
  • Given an n x n square matrix, find sum of all sub-squares of size k x k

最后

以上就是贪玩羊为你收集整理的good article————K’th Smallest/Largest Element in Unsorted Array | Set 2 (Expected Linear Time)的全部内容,希望文章能够帮你解决good article————K’th Smallest/Largest Element in Unsorted Array | Set 2 (Expected Linear Time)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(54)

评论列表共有 0 条评论

立即
投稿
返回
顶部