我是靠谱客的博主 听话老虎,最近开发中收集的这篇文章主要介绍Spark DataFrame、DataSet、SparkToHive、SparkToMysqlDataFrameDemo DataSetDemo SparkToHive SparkToMysql,觉得挺不错的,现在分享给大家,希望可以做个参考。
概述
目录
DataFrameDemo
DataSetDemo
SparkToHive
SparkToMysql
DataFrameDemo
package cn.kgc.ds
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
object DataFrameDemo {
def main(args: Array[String]): Unit = {
val spark: SparkSession = SparkSession.builder().master("local[*]").appName("dsdemo1").getOrCreate()
val sc: SparkContext = spark.sparkContext
import spark.implicits._
val people: RDD[String] = sc.textFile("in/people.txt")
people.foreach(println)
//DataFrame ==> rdd[ROW] schema =>> [StructType(Array(StructField)]
// //数组map 非 RDD map
val schemaString="id name age"
val fields: Array[StructField] = schemaString.split(" ").map(x => StructField(x, StringType, true))
val schema: StructType = StructType(fields)
val peopleRddRow: RDD[Row] = people.map(x => {
val strings: Array[String] = x.split(" ")
Row(strings(0), strings(1), strings(2))
})
val df1: DataFrame = spark.createDataFrame(peopleRddRow,schema)
df1.printSchema()
df1.show()
//DataFrame ==> rdd[ROW] schema =>> [StructType(Array(StructField)]
// val fields = Array(
// StructField("id", IntegerType, true),
// StructField("name", StringType, true),
// StructField("age", IntegerType, true)
// )
//
// val schema: StructType = StructType(fields)
//
// val peopleRddRow: RDD[Row] = people.map(x => {
// val strings: Array[String] = x.split(" ")
// Row(strings(0).toInt, strings(1), strings(2).toInt)
// })
//
// val frame: DataFrame = spark.createDataFrame(peopleRddRow,schema)
// frame.printSchema()
// frame.show()
}
}
DataSetDemo
package cn.kgc.ds
import java.util.Locale.Category
import cn.kgc.ds
import org.apache.spark
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{DoubleType, LongType}
import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}
import org.apache.spark.{SparkConf, SparkContext}
//样例类
case class Point(label:String,x:Double,y:Double)
case class Category(id:Long,name:String)
object DataSetDemo {
def main(args: Array[String]): Unit = {
// val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("dsdemo")
// val sc: SparkContext = SparkContext.getOrCreate(conf)
val spark: SparkSession = SparkSession.builder().master("local[*]").appName("ds1demo").getOrCreate()
val sc: SparkContext = spark.sparkContext
import spark.implicits._
// val rdd1: RDD[Int] = sc.parallelize(1 to 6)
// val ds1: Dataset[Int] = spark.createDataset(1 to 6) //ds => rdd schema
// ds1.printSchema()
// ds1.show()
//
// val ds2: Dataset[(String, Int)] = spark.createDataset(List(("a",1),("b",2))) //ds2.DataSet => rdd schema
// ds2.printSchema()
// ds2.show()
//
// val df = ds2.withColumnRenamed("_1","name").withColumnRenamed("_2","id")
// df.printSchema()
// df.show()
//
// val df2: DataFrame = df.withColumn("id",$"id".cast(LongType))
// df2.printSchema()
//
// val ds3: Dataset[(String, Int, Int)] = spark.createDataset(sc.parallelize(List(("gree",38,60),("ant",9,25))))
// ds3.printSchema()
// ds3.show()
//
//
// val df3 = ds3.withColumnRenamed("_1","name").withColumnRenamed("_2","age").withColumnRenamed("_3","weight")
// df3.printSchema()
// df3.show()
//
// val df4 = df3.withColumn("weight",$"weight".cast(DoubleType))
// df4.printSchema()
// val points: Seq[Point] = Seq(Point("jsnj",32.12,43.12),Point("scdt",65.23,54.12))
// val pointDS: Dataset[Point] = points.toDS()
//
// pointDS.printSchema()
// pointDS.show()
//
// val categories = Seq(Category(1,"jsnj"),Category(2,"sxdt"))
// val categoriesDS: Dataset[Category] = categories.toDS()
// categoriesDS.printSchema()
// categoriesDS.show()
//
// val df2: DataFrame = pointDS.join(categoriesDS,pointDS("label")===categoriesDS("name"))
// df2.printSchema()
// df2.show()
val pointRDD: RDD[(String, Double, Double)] = sc.parallelize(List(("jsnj",32.12,43.12),("sxdt",65.23,54.12)))
val categoriesRDD: RDD[(Long,String)] = sc.parallelize(List((1,"jsnj"),(2,"sxdt")))
val pointDS: Dataset[Point] = pointRDD.map(x=>Point(x._1,x._2,x._3)).toDS()
pointDS.printSchema()
pointDS.show()
val categoriesDS: Dataset[Category] = categoriesRDD.map(x=>ds.Category(x._1,x._2)).toDS()
categoriesDS.printSchema()
categoriesDS.show()
}
}
SparkToHive
package cn.kgc.ds
import org.apache.spark
import org.apache.spark.sql.{DataFrame, SparkSession}
object SparkToHive {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().appName("sparktohive")
.master("local[*]")
.config("hive.metastore.uris", "thrift://192.168.111.131:9083")
.enableHiveSupport()
.getOrCreate()
val torontoDF: DataFrame =spark.sql ("select * from spark.toronto")
torontoDF.printSchema()
torontoDF.show()
// val orderDF: DataFrame =spark.sql ("select orderid,count(1) cishu from lalian.orders group by orderid ")
// orderDF.printSchema()
// orderDF.show()
// orderDF.write.saveAsTable("lalian.orderscount")
}
}
SparkToMysql
package cn.kgc.ds
import java.util.Properties
import org.apache.spark.sql.{DataFrame, SaveMode, SparkSession}
object SparkToMysql {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().appName("sparktosql" )
.master("local[*]")
// .config("hive.metastore.uris", "thrift://192.168.111.131:9083")
// .enableHiveSupport()
.getOrCreate()
val url="jdbc:mysql://192.168.111.131:3306/mybatisdb"
val driver="com.mysql.jdbc.Driver"
val user="root"
val pwd="root"
val properties = new Properties()
properties.setProperty("user",user)
properties.setProperty("password",pwd)
properties.setProperty("driver",driver)
val tblsDF: DataFrame = spark.read.jdbc(url,"student",properties)
tblsDF.printSchema()
tblsDF.show()
import org.apache.spark.sql.functions._
val frame: DataFrame = tblsDF.agg(
max("age").as("maxage"),
min("age").as("minage"),
avg("age").as("avgage")
)
frame.printSchema()
frame.show()
//覆盖
frame.write.mode(SaveMode.Overwrite).jdbc(url,"maxage",properties)
}
}
最后
以上就是听话老虎为你收集整理的Spark DataFrame、DataSet、SparkToHive、SparkToMysqlDataFrameDemo DataSetDemo SparkToHive SparkToMysql的全部内容,希望文章能够帮你解决Spark DataFrame、DataSet、SparkToHive、SparkToMysqlDataFrameDemo DataSetDemo SparkToHive SparkToMysql所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复