我是靠谱客的博主 快乐冷风,最近开发中收集的这篇文章主要介绍模型可视化 netron一、代码二、netron,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

目录

  • 一、代码
  • 二、netron

一、代码

可以先从yolov5s.yaml中可以看到每一层的结构

# parameters
nc: 20  # number of classes
depth_multiple: 0.33  # model depth multiple 控制模型的深度(BottleneckCSP个数)
width_multiple: 0.50  # layer channel multiple 控制Conv通道channel个数(卷积核数量)
# depth_multiple表示BottleneckCSP模块的缩放因子,将所有BottleneckCSP模块的Bottleneck乘上该参数得到最终个数。
# width_multiple表示卷积通道的缩放因子,就是将配置里面的backbone和head部分有关Conv通道的设置,全部乘以该系数。
# 通过这两个参数就可以实现不同复杂度的模型设计。

# anchors
anchors:
  - [10,13, 16,30, 33,23]  # P3/8  wh  stride=8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  # from表示当前模块的输入来自那一层的输出,-1表示来自上一层的输出
  # number表示本模块重复的次数,1表示只有一个,3表示重复3次
  # module: 模块名
  # args:
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4  128个3x3的卷积核 stride=2
   [-1, 3, C3, [128]],  # CSP Bottleneck with 3 convolutions
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 3, C3, [1024, False]],  # 9
  ]

# YOLOv5 head
# 作者没有区分neck模块,所以head部分包含了PANet+Detect部分
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

或者使用命名输出:

YOLOv5  2021-6-29 torch 1.7.0+cpu CPU


                 from  n    params  module                                  arguments                     
  0                -1  1      3520  models.common.Focus                     [3, 32, 3]                    
  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                
  2                -1  1     18816  models.common.C3                        [64, 64, 1]                   
  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               
  4                -1  1    156928  models.common.C3                        [128, 128, 3]                 
  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              
  6                -1  1    625152  models.common.C3                        [256, 256, 3]                 
  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              
  8                -1  1    656896  models.common.SPP                       [512, 512, [5, 9, 13]]        
  9                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          
 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              
 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 12           [-1, 6]  1         0  models.common.Concat                    [1]                           
 13                -1  1    361984  models.common.C3                        [512, 256, 1, False]          
 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              
 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 16           [-1, 4]  1         0  models.common.Concat                    [1]                           
 17                -1  1     90880  models.common.C3                        [256, 128, 1, False]          
 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              
 19          [-1, 14]  1         0  models.common.Concat                    [1]                           
 20                -1  1    296448  models.common.C3                        [256, 256, 1, False]          
 21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              
 22          [-1, 10]  1         0  models.common.Concat                    [1]                           
 23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          
 24      [17, 20, 23]  1     67425  Detect                                  [20, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
Model Summary: 283 layers, 7114785 parameters, 7114785 gradients, 16.5 GFLOPs

二、netron

注意几点:
1、不能直接打开官方给的yolov5s.pt,很多细节都是没用的,可以试试。
2、不能直接用export.py文件转为onnx文件,很多细节是错的,可以试试。
3、至于使用tensorboard之类的打开网络结构,一般都很不直观。

之前的代码上观看可能并不直观,如果想要直观的看到每一层的结构,我建议使用netron这个工具。

但是要想使用netron之前还需要生成自己的pt文件,直接使用官网的yolov5s.pt是看不清的。生成代码如下:

import torch
from models.yolo import Model

cfg = "models/yolov5s.yaml"
# Create model
model = Model(cfg).to("cpu")
x = torch.randn(1, 3, 640, 640).to("cpu")
script_model = torch.jit.trace(model, x)
script_model.save("weights/m.pt")

再使用netron软件或者网站打开m.pt就可以看到yolov5s的网络结构了,虽然还是有点不好看,但是以及可视化的很不错了,大家可以试试。

在这里插入图片描述

最后

以上就是快乐冷风为你收集整理的模型可视化 netron一、代码二、netron的全部内容,希望文章能够帮你解决模型可视化 netron一、代码二、netron所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(50)

评论列表共有 0 条评论

立即
投稿
返回
顶部