概述
Linux通常使用Framebuffer来用作显示输出,Framebuffer就是一块内存区域,它通常是显示驱动的内部缓冲区在内存中的映射。一旦用户进程把图像数据复制到Framebuffer中,显示驱动会一个像素一个像素地扫描整个Framebuffer,并根据其中的值更新屏幕上像素点的颜色。驱动中这种更新屏幕的动作是固定的,它的周期就是我们常说的刷新率。
但是在屏幕更新一半时,用户进程更新了Framebuffer中的数据,将导致屏幕上画面的上半部分是前一帧的画面,下半部分变成了新的画面。当然错误会在下次刷新时纠正过来,但是这样也会有闪烁的感觉。这个可以使用双缓冲机制,双缓冲就是提供两块Framebuffer,一块用于显示,一块用于数据更新。数据准备好后,通过ioctl操作告诉显示设备切换用于显示的FrameBuffer,这样图像就能快速的显示出来。
但是双缓冲并没有完全解决问题,虽然双缓冲切换的速度很快,但是如果切换的时间点不对,在画面更新一半的时候切换,还是会出现闪烁的问题。当然,我们可以在底层进行控制,收到切换请求的时候,内部并不马上执行,等到刷新完成后再切换,这样完全避免了画面重叠问题。但是这样也有问题,如果用ioctl操作告诉底层可以进行切换了,但是缓冲区没有切换,这样应用层就不能确定何时可以再使用缓冲区,因此只能不断的通过ioctl来查询缓冲区的状态,一直到切换完成了。这种方式效率太低,拖慢了整个系统。解决这个问题就是底层固定发送信号给用户进程,通知进程切换的时机。这个信号就是VSync信号。
VSync信号是一个硬件信号,一般是显示设备刷新的周期到了会发送。
一、VSync信号的产生
Android通过VSync机制来提高显示效果,那么VSync是如何产生的?通常这个信号是由显示驱动产生,这样才能达到最佳效果。但是Android为了能运行在不支持VSync机制的设备上,也提供了软件模拟产生VSync信号的手段。
SurfaceFlinger中用HWComposer类来表示硬件显示设备,
HWComposer::HWComposer(
const sp<SurfaceFlinger>& flinger,
EventHandler& handler)
: mFlinger(flinger),
mFbDev(0), mHwc(0), mNumDisplays(1),
mCBContext(new cb_context),
mEventHandler(handler),
mDebugForceFakeVSync(false)
{
......
bool needVSyncThread = true;
// Note: some devices may insist that the FB HAL be opened before HWC.
int fberr = loadFbHalModule();//装载FrameBuffer的硬件模块
loadHwcModule();//装载HWComposer的硬件模块,这个函数中会将mHwc置为true
......
if (mHwc) {//这个为true代表硬件设备打开了
ALOGI("Using %s version %u.%u", HWC_HARDWARE_COMPOSER,
(hwcApiVersion(mHwc) >> 24) & 0xff,
(hwcApiVersion(mHwc) >> 16) & 0xff);
if (mHwc->registerProcs) {
mCBContext->hwc = this;
mCBContext->procs.invalidate = &hook_invalidate;
mCBContext->procs.vsync = &hook_vsync;//vsync回调函数
if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1))
mCBContext->procs.hotplug = &hook_hotplug;
else
mCBContext->procs.hotplug = NULL;
memset(mCBContext->procs.zero, 0, sizeof(mCBContext->procs.zero));
mHwc->registerProcs(mHwc, &mCBContext->procs);
}
// don't need a vsync thread if we have a hardware composer
needVSyncThread = false;//打开硬件设备成功了,将needVSncThread为false
......
}
......
if (needVSyncThread) {
// we don't have VSYNC support, we need to fake it
mVSyncThread = new VSyncThread(*this);
}
}
通过loadHwcModule来装载硬件模块,如果成功,mHwc为true,needVSyncThread为false。如果不成功,needVsyncThread为true,然后就要创建VSyncThread对象了,它就是产生VSync信号的软件手段了。
VSyncThread是一个thread,在onFirstRef中会调用run函数,就是执行threadLoop,这个函数只要返回true就会一直执行。
bool HWComposer::VSyncThread::threadLoop() {
{ // scope for lock
Mutex::Autolock _l(mLock);
while (!mEnabled) {
mCondition.wait(mLock);
}
}
const nsecs_t period = mRefreshPeriod;
const nsecs_t now = systemTime(CLOCK_MONOTONIC);
nsecs_t next_vsync = mNextFakeVSync;
nsecs_t sleep = next_vsync - now;
if (sleep < 0) {
// we missed, find where the next vsync should be
sleep = (period - ((now - next_vsync) % period));
next_vsync = now + sleep;
}
mNextFakeVSync = next_vsync + period;
struct timespec spec;
spec.tv_sec
= next_vsync / 1000000000;
spec.tv_nsec = next_vsync % 1000000000;
int err;
do {
err = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &spec, NULL);
} while (err<0 && errno == EINTR);
if (err == 0) {
mHwc.mEventHandler.onVSyncReceived(0, next_vsync);
}
return true;
}
这个函数会间隔模拟产生VSync的信号的原理是在固定时间发送消息给HWCompoer的消息对象mEventHandler,这个其实就到SurfaceFlinger的onVSyncReceived函数了。用软件模拟VSync信号在系统比较忙的时候可能会丢失一些信号。
Android源码再hardware/lib/libhardware/modules下有一个hwcomposer目录,里面是一个Android提供的缺省的硬件HWComposer模块的例子,这个例子只实现了一个open接口,并不能真正工作。在前面HWComposer的构造函数中,有如下代码
mCBContext->procs.vsync = &hook_vsync;
这里指定了vsync的回调函数是hook_vsync,如果硬件中产生了VSync信号,将通过这个函数来通知上层,看看它的代码:
void HWComposer::hook_vsync(const struct hwc_procs* procs, int disp,
int64_t timestamp) {
cb_context* ctx = reinterpret_cast<cb_context*>(
const_cast<hwc_procs_t*>(procs));
ctx->hwc->vsync(disp, timestamp);
}
然后又调用了vsync函数,这个函数最后也是调用了mEventHandler.onVSyncReceived函数,这个函数最后回到SurfaceFlinger中的onVsyncReceived函数中。
void HWComposer::vsync(int disp, int64_t timestamp) {
if (uint32_t(disp) < HWC_NUM_PHYSICAL_DISPLAY_TYPES) {
{
Mutex::Autolock _l(mLock);
// There have been reports of HWCs that signal several vsync events
// with the same timestamp when turning the display off and on. This
// is a bug in the HWC implementation, but filter the extra events
// out here so they don't cause havoc downstream.
if (timestamp == mLastHwVSync[disp]) {
ALOGW("Ignoring duplicate VSYNC event from HWC (t=%" PRId64 ")",
timestamp);
return;
}
mLastHwVSync[disp] = timestamp;
}
char tag[16];
snprintf(tag, sizeof(tag), "HW_VSYNC_%1u", disp);
ATRACE_INT(tag, ++mVSyncCounts[disp] & 1);
mEventHandler.onVSyncReceived(disp, timestamp);
}
}
二、FrameBuffer工作原理
我们先来看下loadFbHalModule函数,hw_get_module是HAl框架中装载HAL模块的函数
int HWComposer::loadFbHalModule()
{
hw_module_t const* module;
int err = hw_get_module(GRALLOC_HARDWARE_MODULE_ID, &module);
if (err != 0) {
ALOGE("%s module not found", GRALLOC_HARDWARE_MODULE_ID);
return err;
}
return framebuffer_open(module, &mFbDev);
}
我们再来看看framebuffer_open函数,
static inline int framebuffer_open(const struct hw_module_t* module,
struct framebuffer_device_t** device) {
return module->methods->open(module,
GRALLOC_HARDWARE_FB0, (struct hw_device_t**)device);
}
GRALLOC_HARDWARE_FB0 就是fb0
#define GRALLOC_HARDWARE_FB0 "fb0"
Gralloc模块在实际设备中有硬件厂商提供。我们来看下这个open函数
static int gralloc_device_open(const hw_module_t* module, const char* name, hw_device_t** device)
{
int status = -EINVAL;
if (!strncmp(name, GRALLOC_HARDWARE_GPU0, MALI_GRALLOC_HARDWARE_MAX_STR_LEN))
{
status = alloc_device_open(module, name, device);//处理gpu的
}
else if (!strncmp(name, GRALLOC_HARDWARE_FB0, MALI_GRALLOC_HARDWARE_MAX_STR_LEN))
{
status = framebuffer_device_open(module, name, device);
}
return status;
}
我们来看framebuffer_device_open函数,如果不支持framebuffer直接退出了(现在很多设备都开始不支持了)。如果支持framebuffer的话先是调用了init_frame_buffer函数来获取设备信息,通过mmap分配一块共享内存,然后设置FrameBuffer的操作函数等。
int framebuffer_device_open(hw_module_t const* module, const char* name, hw_device_t** device)
{
int status = -EINVAL;
log_fbpost = false;
char property[PROPERTY_VALUE_MAX];
if(property_get("debug.gralloc.fbpost", property, "0") > 0) {
if(atoi(property) == 1) {
log_fbpost = true;
ALOGI("enable fbpost log!");
}
}
alloc_device_t* gralloc_device;
#if DISABLE_FRAMEBUFFER_HAL == 1 //不支持FrameBuffer
AERR("Framebuffer HAL not support/disabled %s",
#ifdef MALI_DISPLAY_VERSION
"with MALI display enable");
#else
"");
#endif
return -ENODEV;
#endif
status = gralloc_open(module, &gralloc_device);
if (status < 0)
{
return status;
}
private_module_t* m = (private_module_t*)module;
status = init_frame_buffer(m);
framebuffer_device_t *dev =
reinterpret_cast<framebuffer_device_t*> (malloc(sizeof(framebuffer_device_t)));
/* if either or both of init_frame_buffer() and malloc failed */
if ((status < 0) || (!dev))
{
gralloc_close(gralloc_device);
(!dev) ? (void)(status = -ENOMEM) : free(dev);
return status;
}
memset(dev, 0, sizeof(*dev));
//设置framebuffer的操作函数
dev->common.tag = HARDWARE_DEVICE_TAG;
dev->common.version = 0;
dev->common.module = const_cast<hw_module_t*>(module);
dev->common.close = fb_close;
dev->setSwapInterval = fb_set_swap_interval;
dev->post = fb_post;
dev->enableScreen = fb_enable_screen;
dev->setUpdateRect = 0;
dev->compositionComplete = &compositionComplete;
int stride = m->finfo.line_length / (m->info.bits_per_pixel >> 3);
const_cast<uint32_t&>(dev->flags) = 0;
const_cast<uint32_t&>(dev->width) = m->info.xres;
const_cast<uint32_t&>(dev->height) = m->info.yres;
const_cast<int&>(dev->stride) = stride;
const_cast<int&>(dev->format) = m->fbFormat;
const_cast<float&>(dev->xdpi) = m->xdpi;
const_cast<float&>(dev->ydpi) = m->ydpi;
const_cast<float&>(dev->fps) = m->fps;
const_cast<int&>(dev->minSwapInterval) = 0;
const_cast<int&>(dev->maxSwapInterval) = 1;
const_cast<int&>(dev->numFramebuffers) = m->numBuffers;
*device = &dev->common;
AINF("%s line %d format %d numBuffers %d",__FUNCTION__,__LINE__, dev->format, m->numBuffers);
//init dynamic lcd fps adjustment
dyn_fps_init(m);
#if GRALLOC_VSYNC_NEEDED == 1
gralloc_vsync_enable(dev);//支持vsync
#endif
gralloc_close(gralloc_device);
return status;
}
init_frame_buffer函数主要调用了init_frame_buffer_locked函数
static int init_frame_buffer(struct private_module_t* module)
{
pthread_mutex_lock(&module->lock);
int err = init_frame_buffer_locked(module);
pthread_mutex_unlock(&module->lock);
return err;
}
我们来看看init_frame_buffer_locked函数,先打开设备列表中的一个设备即可,然后通过ioctl获取设备信息,把设备信息放到module中,后面通过mmap分配一块共享内存。
int init_frame_buffer_locked(struct private_module_t* module)
{
if (module->framebuffer)
{
return 0; // Nothing to do, already initialized
}
char const * const device_template[] =//设备列表
{
"/dev/graphics/fb%u",
"/dev/fb%u",
NULL
};
int fd = -1;
int i = 0;
char name[64];
while ((fd == -1) && device_template[i])//只要打开一个设备就好了
{
snprintf(name, 64, device_template[i], 0);
fd = open(name, O_RDWR, 0);
i++;
}
if (fd < 0)
{
return -errno;
}
struct fb_fix_screeninfo finfo;
if (ioctl(fd, FBIOGET_FSCREENINFO, &finfo) == -1)
{
return -errno;
}
struct fb_var_screeninfo info;
if (ioctl(fd, FBIOGET_VSCREENINFO, &info) == -1)
{
return -errno;
}
info.reserved[0] = 0;
info.reserved[1] = 0;
info.reserved[2] = 0;
info.xoffset = 0;
info.yoffset = 0;
info.activate = FB_ACTIVATE_NOW;
if(info.bits_per_pixel == 32)
{
/*
* Explicitly request 8/8/8
*/
info.bits_per_pixel = 32;
info.red.offset
= 16;
info.red.length
= 8;
info.green.offset
= 8;
info.green.length
= 8;
info.blue.offset
= 0;
info.blue.length
= 8;
info.transp.offset
= 24;
info.transp.length
= 8;
}
else
{
/*
* Explicitly request 5/6/5
*/
info.bits_per_pixel = 16;
info.red.offset
= 11;
info.red.length
= 5;
info.green.offset
= 5;
info.green.length
= 6;
info.blue.offset
= 0;
info.blue.length
= 5;
info.transp.offset
= 0;
info.transp.length
= 0;
}
/*
* Request NUM_BUFFERS screens (at lest 2 for page flipping)
*/
info.yres_virtual = info.yres * NUM_BUFFERS;
uint32_t flags = PAGE_FLIP;
if (ioctl(fd, FBIOPUT_VSCREENINFO, &info) == -1)
{
info.yres_virtual = info.yres;
flags &= ~PAGE_FLIP;
AWAR( "FBIOPUT_VSCREENINFO failed, page flipping not supported fd: %d", fd );
}
if (info.yres_virtual < info.yres * 2)
{
// we need at least 2 for page-flipping
info.yres_virtual = info.yres;
flags &= ~PAGE_FLIP;
AWAR( "page flipping not supported (yres_virtual=%d, requested=%d)", info.yres_virtual, info.yres*2 );
}
if (ioctl(fd, FBIOGET_VSCREENINFO, &info) == -1)
{
return -errno;
}
int refreshRate = 0;
if ( info.pixclock > 0 )
{
refreshRate = 1000000000000000LLU /
(
uint64_t( info.upper_margin + info.lower_margin + info.yres + info.hsync_len )
* ( info.left_margin
+ info.right_margin + info.xres + info.vsync_len )
* info.pixclock
);
}
else
{
AWAR( "fbdev pixclock is zero for fd: %d", fd );
}
if (refreshRate == 0)
{
refreshRate = 60*1000;
// 60 Hz
}
if (int(info.width) <= 0 || int(info.height) <= 0)
{
// the driver doesn't return that information
// default to 320 dpi
// debugging stuff...
char value[PROPERTY_VALUE_MAX];
int lcd_density;
property_get("ro.sf.lcd_density", value, "320");
lcd_density = atoi(value);
info.width
= ((info.xres * 25.4f) / (float)lcd_density + 0.5f);
info.height = ((info.yres * 25.4f) / (float)lcd_density + 0.5f);
}
float xdpi = (info.xres * 25.4f) / info.width;
float ydpi = (info.yres * 25.4f) / info.height;
float fps
= refreshRate / 1000.0f;
AINF("leadcore fb using (fd=%d)n"
"id
= %sn"
"xres
= %d pxn"
"yres
= %d pxn"
"xres_virtual = %d pxn"
"yres_virtual = %d pxn"
"bpp
= %dn"
"r
= %2u:%un"
"g
= %2u:%un"
"b
= %2u:%un",
fd,
finfo.id,
info.xres,
info.yres,
info.xres_virtual,
info.yres_virtual,
info.bits_per_pixel,
info.red.offset, info.red.length,
info.green.offset, info.green.length,
info.blue.offset, info.blue.length);
AINF("width
= %d mm (%f dpi)n"
"height
= %d mm (%f dpi)n"
"refresh rate = %.2f Hzn",
info.width,
xdpi,
info.height, ydpi,
fps);
if (0 == strncmp(finfo.id, "CLCD FB", 7))
{
module->dpy_type = MALI_DPY_TYPE_CLCD;
}
else if (0 == strncmp(finfo.id, "ARM Mali HDLCD", 14))
{
module->dpy_type = MALI_DPY_TYPE_HDLCD;
}
else
{
module->dpy_type = MALI_DPY_TYPE_UNKNOWN;
}
if (ioctl(fd, FBIOGET_FSCREENINFO, &finfo) == -1)
{
return -errno;
}
if (finfo.smem_len <= 0)
{
return -errno;
}
if( info.bits_per_pixel == 32 &&
info.red.offset == 16 &&
info.red.length == 8 &&
info.green.offset == 8 &&
info.green.length == 8 &&
info.blue.offset == 0 &&
info.blue.length == 8)
{
module->fbFormat = HAL_PIXEL_FORMAT_BGRA_8888;
}
if( info.bits_per_pixel == 32 &&
info.red.offset == 0 &&
info.red.length == 8 &&
info.green.offset == 8 &&
info.green.length == 8 &&
info.blue.offset == 16 &&
info.blue.length == 8)
{
module->fbFormat = HAL_PIXEL_FORMAT_RGBA_8888;
}
if( info.bits_per_pixel == 16 &&
info.red.offset == 0 &&
info.red.length == 5 &&
info.green.offset == 5 &&
info.green.length == 6 &&
info.blue.offset == 11 &&
info.blue.length == 5)
{
module->fbFormat = HAL_PIXEL_FORMAT_RGB_565;
}
module->flags = flags;//设置信息
module->info = info;
module->finfo = finfo;
module->xdpi = xdpi;
module->ydpi = ydpi;
module->fps = fps;
module->swapInterval = 1;
/*
* map the framebuffer
*/
size_t fbSize = round_up_to_page_size(finfo.line_length * info.yres_virtual);
void* vaddr = mmap(0, fbSize, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);//mmap分配一块共享内存
if (vaddr == MAP_FAILED)
{
AERR( "Error mapping the framebuffer (%s)", strerror(errno) );
return -errno;
}
//fix black screen between uboot logo and bootanimation
//memset(vaddr, 0, fbSize);
// Create a "fake" buffer object for the entire frame buffer memory, and store it in the module
module->framebuffer = new private_handle_t(private_handle_t::PRIV_FLAGS_FRAMEBUFFER, GRALLOC_USAGE_HW_FB, fbSize, vaddr,
0, dup(fd), 0, 0);
module->numBuffers = info.yres_virtual / info.yres;
module->bufferMask = 0;
return 0;
}
最后我们再来看看framebuffer的操作函数fb_post,这个函数根据PRIV_FLAGS_FRAMEBUFFER来判断Framebuffer是否支持多缓冲,如果不支持方法很简单,直接把buffer中的数据复制到Framebuffer中就可以了。
Filp是指使用ioctl的FBIOPUT_VSCREENINFO参数设置当前显示的buffer。通过将显示区域指向Framebuffer中的新的数据帧,能非常迅速地完成buffer的切换。单缓冲模式下数据复制到缓冲区还需要一定时间,会加重闪烁感,通过Filp的方式切换缓冲区就不存在这个问题了。
static int fb_post(struct framebuffer_device_t* dev, buffer_handle_t buffer)
{
if (private_handle_t::validate(buffer) < 0)
{
return -EINVAL;
}
private_handle_t const* hnd = reinterpret_cast<private_handle_t const*>(buffer);
private_module_t* m = reinterpret_cast<private_module_t*>(dev->common.module);
if (m->currentBuffer)
{
m->base.unlock(&m->base, m->currentBuffer);
m->currentBuffer = 0;
}
struct timeval tv1, tv2;
if (hnd->flags & private_handle_t::PRIV_FLAGS_FRAMEBUFFER) //framebuffer是否支持多缓冲区(flip)
{
m->base.lock(&m->base, buffer, private_module_t::PRIV_USAGE_LOCKED_FOR_POST,
0, 0, m->info.xres, m->info.yres, NULL);
const size_t offset = (uintptr_t)hnd->base - (uintptr_t)m->framebuffer->base;
int interrupt;
m->info.activate = FB_ACTIVATE_VBL;
m->info.yoffset = offset / m->finfo.line_length;
up_fps(m);
gettimeofday(&tv1, NULL);
if (ioctl(m->framebuffer->fd, FBIOPUT_VSCREENINFO, &m->info) == -1)
{
AERR( "FBIOPUT_VSCREENINFO failed for fd: %d", m->framebuffer->fd );
m->base.unlock(&m->base, buffer);
return -errno;
}
#if GRALLOC_VSYNC_NEEDED
if ( 0 != gralloc_wait_for_vsync(dev) )
{
AERR( "Gralloc wait for vsync failed for fd: %d", m->framebuffer->fd );
m->base.unlock(&m->base, buffer);
return -errno;
}
#endif
gettimeofday(&tv2, NULL);
if((int64_t)tv2.tv_sec * 1000 + tv2.tv_usec/1000 - (int64_t)tv1.tv_sec * 1000 - tv1.tv_usec/1000 > 50)
{
ALOGI("%s line %d FBIOPUT_VSCREENINFO buffer %p blocktime=%lldms now=%lldms lasttime=%lld tid=%d",__FUNCTION__,__LINE__,
buffer,
(int64_t)tv2.tv_sec * 1000 + tv2.tv_usec/1000 - (int64_t)tv1.tv_sec * 1000 - tv1.tv_usec/1000,
systemTime(CLOCK_MONOTONIC)/1000000,
(int64_t)tv2.tv_sec * 1000 + tv2.tv_usec/1000 - lasttime,
gettid());
} else {
ALOGD_IF(log_fbpost, "%s line %d FBIOPUT_VSCREENINFO buffer %p blocktime=%lldms now=%lldms lasttime=%lld tid=%d",__FUNCTION__,__LINE__,
buffer,
(int64_t)tv2.tv_sec * 1000 + tv2.tv_usec/1000 - (int64_t)tv1.tv_sec * 1000 - tv1.tv_usec/1000,
systemTime(CLOCK_MONOTONIC)/1000000,
(int64_t)tv2.tv_sec * 1000 + tv2.tv_usec/1000 - lasttime,
gettid());
}
lasttime = (int64_t)tv2.tv_sec * 1000 + tv2.tv_usec/1000;
postcount++;
if(postcount == 1000)
{
ALOGI("%s line %d avgframerate = %2f",__FUNCTION__,__LINE__,
(float)postcount*1000.0/(lasttime - timecount));
postcount = 0;
timecount = lasttime;
}
m->currentBuffer = buffer;
} else {//不支持多缓冲(flip)
void* fb_vaddr;
void* buffer_vaddr;
m->base.lock(&m->base, m->framebuffer, GRALLOC_USAGE_SW_WRITE_RARELY,
0, 0, m->info.xres, m->info.yres, &fb_vaddr);
m->base.lock(&m->base, buffer, GRALLOC_USAGE_SW_READ_RARELY,
0, 0, m->info.xres, m->info.yres, &buffer_vaddr);
// If buffer's alignment match framebuffer alignment we can do a direct copy.
// If not we must fallback to do an aligned copy of each line.
if ( hnd->byte_stride == (int)m->finfo.line_length )
{
memcpy(fb_vaddr, buffer_vaddr, m->finfo.line_length * m->info.yres);
}
else
{
uintptr_t fb_offset = 0;
uintptr_t buffer_offset = 0;
unsigned int i;
for (i = 0; i < m->info.yres; i++)
{
memcpy((void *)((uintptr_t)fb_vaddr + fb_offset),
(void *)((uintptr_t)buffer_vaddr + buffer_offset),
m->finfo.line_length);
fb_offset += m->finfo.line_length;
buffer_offset += hnd->byte_stride;
}
}
m->base.unlock(&m->base, buffer);
m->base.unlock(&m->base, m->framebuffer);
}
return 0;
}
三、分配图像缓冲区的内存
之前的博客在GraphicBufferAllocator的alloc方法是调用了mAllocDev的alloc,而这个mAllocDev也是Gralloc模块,最后会调用如下方法。
int gralloc_alloc(struct alloc_device_t* dev,
int w, int h, int format, int usage,
buffer_handle_t* pHandle, int* pStride)
{
int rel;
/* TODO: Redirect to specific allocator according to usage. */
if (usage & GRALLOC_USAGE_HW_FB) {
/* Dispatch to framebuffer allocator. */
rel = gralloc_alloc_framebuffer(dev,
w, h, format, usage, pHandle, pStride);
} else {
rel = gc_gralloc_alloc(dev, w, h, format, usage, pHandle, pStride);
}
return rel;
}
gralloc_alloc函数会根据usage中的标志是否有GRALLOC_USAGE_HW_FB来决定是从硬件缓冲中分配缓冲区还是从普通内存分配缓冲区。我们先看看从内存中分配缓冲区的。
如果不支持framebuffer,只能从普通内存中分配缓冲区。gc_gralloc_alloc函数是从普通内存中分配缓冲区,主要使用了匿名共享内存的方法。最后pHandle装了共享内存的fd。
另外从硬件缓冲区分配内存是调用了gralloc_alloc_framebuffer方法,这个函数主要调用了gralloc_alloc_framebuffer_locked方法
static int gralloc_alloc_framebuffer_locked(alloc_device_t* dev, size_t size, int usage, buffer_handle_t* pHandle, int* stride, int* byte_stride)
{
private_module_t* m = reinterpret_cast<private_module_t*>(dev->common.module);
// allocate the framebuffer
if (m->framebuffer == NULL)//如果为空
{
// initialize the framebuffer, the framebuffer is mapped once and forever.
int err = init_frame_buffer_locked(m);//分配一大块内存
if (err < 0)
{
return err;
}
}
const uint32_t bufferMask = m->bufferMask;
const uint32_t numBuffers = m->numBuffers;
/* framebufferSize is used for allocating the handle to the framebuffer and refers
*
to the size of the actual framebuffer.
* alignedFramebufferSize is used for allocating a possible internal buffer and
*
thus need to consider internal alignment requirements. */
const size_t framebufferSize = m->finfo.line_length * m->info.yres;
const size_t alignedFramebufferSize = GRALLOC_ALIGN(m->finfo.line_length, 64) * m->info.yres;
*stride = m->info.xres;
if (numBuffers == 1)//如果是单缓冲,使用普通内存分配
{
// If we have only one buffer, we never use page-flipping. Instead,
// we return a regular buffer which will be memcpy'ed to the main
// screen when post is called.
int newUsage = (usage & ~GRALLOC_USAGE_HW_FB) | GRALLOC_USAGE_HW_2D;
AWAR( "fallback to single buffering. Virtual Y-res too small %d", m->info.yres );
*byte_stride = GRALLOC_ALIGN(m->finfo.line_length, 64);
return alloc_backend_alloc(dev, alignedFramebufferSize, newUsage, pHandle);
}
if (bufferMask >= ((1LU<<numBuffers)-1))
{
// We ran out of buffers.
return -ENOMEM;
}
uintptr_t framebufferVaddr = (uintptr_t)m->framebuffer->base;
// find a free slot
for (uint32_t i=0 ; i<numBuffers ; i++)//找到一块空闲的快
{
if ((bufferMask & (1LU<<i)) == 0)
{
m->bufferMask |= (1LU<<i);
break;
}
framebufferVaddr += framebufferSize;
}
// The entire framebuffer memory is already mapped, now create a buffer object for parts of this memory
private_handle_t* hnd = new private_handle_t(private_handle_t::PRIV_FLAGS_FRAMEBUFFER, usage, size,
(void*)framebufferVaddr, 0, dup(m->framebuffer->fd),
(framebufferVaddr - (uintptr_t)m->framebuffer->base), 0);
/*
* Perform allocator specific actions. If these fail we fall back to a regular buffer
* which will be memcpy'ed to the main screen when fb_post is called.
*/
if (alloc_backend_alloc_framebuffer(m, hnd) == -1)
{
delete hnd;
int newUsage = (usage & ~GRALLOC_USAGE_HW_FB) | GRALLOC_USAGE_HW_2D;
AERR( "Fallback to single buffering. Unable to map framebuffer memory to handle:%p", hnd );
*byte_stride = GRALLOC_ALIGN(m->finfo.line_length, 64);
return alloc_backend_alloc(dev, alignedFramebufferSize, newUsage, pHandle);
}
*pHandle = hnd;
*byte_stride = m->finfo.line_length;
return 0;
}
这个函数如果第一次调用会调用init_frame_buffer_locked来从Framebuffer设备上分配一大块共享内存,内存的大小是屏幕尺寸的整数倍。numBuffers是内存的块数,如果只有一块代表是单缓冲,单缓冲调用分配普通内存的函数
(单内存只能分配普通内存也很好理解,因为framebuffer的内存要用于显示。重新分配的话只能就分配普通内存了)。多缓冲的话使用Framebuffer的内存。但是Framebuffer的缓冲区块数也是有限的,因此函数要找一块空闲的缓冲区。如果缓冲区分配完了,返回错误值-ENOMEM。
最后
以上就是机灵硬币为你收集整理的Android6.0 显示系统(四) 图像显示相关的全部内容,希望文章能够帮你解决Android6.0 显示系统(四) 图像显示相关所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复