概述
https://www.linuxidc.com/Linux/2012-05/61024.htm
1、framebuffer 帧缓冲
帧缓冲(framebuffer)是Linux 系统为显示设备提供的一个接口,它将显示缓冲区抽象,屏蔽图像硬件的底层差异,允许上层应用程序在图形模式下直接对显示缓冲区进行读写操作。用户不必关心物理显示缓冲区的具体位置及存放方式,这些都由帧缓冲设备驱动本身来完成。
framebuffer机制模仿显卡的功能,将显卡硬件结构抽象为一系列的数据结构,可以通过framebuffer的读写直接对显存进行操作。用户可以将framebuffer看成是显存的一个映像,将其映射到进程空间后,就可以直接进行读写操作,写操作会直接反映在屏幕上。
framebuffer是个字符设备,主设备号为29,对应于/dev/fb%d 设备文件。
通常,使用如下方式(前面的数字表示次设备号)
0 = /dev/fb0 第一个fb 设备
1 = /dev/fb1 第二个fb 设备
fb 也是一种普通的内存设备,可以读写其内容。例如,屏幕抓屏:cp /dev/fb0 myfilefb 虽然可以像内存设备(/dev/mem)一样,对其read,write,seek 以及mmap。但区别在于fb 使用的不是整个内存区,而是显存部分。
2、fb与应用程序的交互
对于用户程序而言,它和其他的设备并没有什么区别,用户可以把fb看成是一块内存,既可以向内存中写数据,也可以读数据。fb的显示缓冲区位于内核空间,应用程序可以把此空间映射到自己的用户空间,在进行操作。
在应用程序中,操作/dev/fbn的一般步骤如下:
(1)打开/dev/fbn设备文件。
(2)用ioctl()操作取得当前显示屏幕的参数,如屏幕分辨率、每
个像素点的比特数。根据屏幕参数可计算屏幕缓冲区的大小。
(3)用mmap()函数,将屏幕缓冲区映射到用户空间。
(4)映射后就可以直接读/写屏幕缓冲区,进行绘图和图片显示了。
3、fb的结构及其相关结构体
在linux中,fb设备驱动的源码主要在Fb.h (linux2.6.28includelinux)和Fbmem.c (linux2.6.28driversvideo)两个文件中,它们是fb设备驱动的中间层,为上层提供系统调用,为底层驱动提供接口。
在fb.h文件中有fb驱动需要使用的很多结构,我们先对这些结构体进行说明:
(1)、
一个帧缓冲区对应一个struct fb_info结构,它包括了帧缓冲设备的属性和操作的完整集合,每个帧设备都有一个fb_info结构体。源码如下:
struct fb_info {
int node;
int flags;
struct mutex lock;/* Lock for open/release/ioctl funcs */互斥锁
struct fb_var_screeninfo var;/* Current var */当前缓冲区的可变参数
struct fb_fix_screeninfo fix;/* Current fix */固定参数
struct fb_monspecs monspecs;/* Current Monitor specs */当前显示器标志
struct work_struct queue;/* Framebuffer event queue */帧缓冲事件队列
struct fb_pixmap pixmap;/* Image hardware mapper */图像硬件mapper
struct fb_pixmap sprite;/* Cursor hardware mapper */光标硬件mapper
struct fb_cmap cmap;/* Current cmap */当前的调色板
struct list_head modelist; /* mode list */
struct fb_videomode *mode;/* current mode */当前的视频模式
#ifdef CONFIG_FB_BACKLIGHT如果配置了LCD支持背光灯
/* assigned backlight device */
/* set before framebuffer registration,
remove after unregister */背光调整
struct backlight_device *bl_dev;
/* Backlight level curve */
struct mutex bl_curve_mutex;
u8 bl_curve[FB_BACKLIGHT_LEVELS];
#endif
#ifdef CONFIG_FB_DEFERRED_IO
struct delayed_work deferred_work;
struct fb_deferred_io *fbdefio;
#endif
struct fb_ops *fbops;帧缓冲操作函数集
struct device *device;/* This is the parent */父设备
struct device *dev;/* This is this fb device */fb设备
int class_flag; /* private sysfs flags */私有的sysfs标志
#ifdef CONFIG_FB_TILEBLITTING
struct fb_tile_ops *tileops; /* Tile Blitting */图块blitting
#endif
char __iomem *screen_base;/* Virtual address */虚拟基地址
unsigned long screen_size;/* Amount of ioremapped VRAM or 0 */ ioremap的虚拟内存大小
void *pseudo_palette;/* Fake palette of 16 colors */ 伪16位调色板
#define FBINFO_STATE_RUNNING 0
#define FBINFO_STATE_SUSPENDED 1
u32 state; /* Hardware state i.e suspend */硬件的状态
void *fbcon_par; /* fbcon use-only private area */
/* From here on everything is device dependent */
void *par;
};
(2)、
/*
* Frame buffer operations
*
* LOCKING NOTE: those functions must _ALL_ be called with the console
* semaphore held, this is the only suitable locking mechanism we have
* in 2.6. Some may be called at interrupt time at this point though.
*/
fb_ops结构体用来实现对帧缓冲设备的操作,这些函数需要驱动开发人员编写,
struct fb_ops {
/* open/release and usage marking */
struct module *owner;
打开和释放
int (*fb_open)(struct fb_info *info, int user);
int (*fb_release)(struct fb_info *info, int user);
这两个函数对于非线性布局的/常规内存映射无法工作的帧缓冲设备需要
/* For framebuffers with strange non linear layouts or that do not
* work with normal memory mapped access
*/
ssize_t (*fb_read)(struct fb_info *info, char __user *buf,
size_t count, loff_t *ppos);
ssize_t (*fb_write)(struct fb_info *info, const char __user *buf,
size_t count, loff_t *ppos);
检测可变参数,并调整到支持的值
/* checks var and eventually tweaks it to something supported,
* DO NOT MODIFY PAR */
int (*fb_check_var)(struct fb_var_screeninfo *var, struct fb_info *info);
设置视频模式
/* set the video mode according to info->var */
int (*fb_set_par)(struct fb_info *info);
设置color寄存器的值
/* set color register */
int (*fb_setcolreg)(unsigned regno, unsigned red, unsigned green,
unsigned blue, unsigned transp, struct fb_info *info);
批量设置color寄存器,设置颜色表
/* set color registers in batch */
int (*fb_setcmap)(struct fb_cmap *cmap, struct fb_info *info);
显示空白
/* blank display */
int (*fb_blank)(int blank, struct fb_info *info);
pan显示
/* pan display */
int (*fb_pan_display)(struct fb_var_screeninfo *var, struct fb_info *info);
填充矩形
/* Draws a rectangle */
void (*fb_fillrect) (struct fb_info *info, const struct fb_fillrect *rect);
数据复制
/* Copy data from area to another */
void (*fb_copyarea) (struct fb_info *info, const struct fb_copyarea *region);
图形填充
/* Draws a image to the display */
void (*fb_imageblit) (struct fb_info *info, const struct fb_image *image);
绘制光标
/* Draws cursor */
int (*fb_cursor) (struct fb_info *info, struct fb_cursor *cursor);
旋转显示
/* Rotates the display */
void (*fb_rotate)(struct fb_info *info, int angle);
等待blit空闲
/* wait for blit idle, optional */
int (*fb_sync)(struct fb_info *info);
fb特定的ioctl操作
/* perform fb specific ioctl (optional) */
int (*fb_ioctl)(struct fb_info *info, unsigned int cmd,
unsigned long arg);
处理32兼容的ioctl操作
/* Handle 32bit compat ioctl (optional) */
int (*fb_compat_ioctl)(struct fb_info *info, unsigned cmd,
unsigned long arg);
fb特定的mmap操作
/* perform fb specific mmap */
int (*fb_mmap)(struct fb_info *info, struct vm_area_struct *vma);
保存目前的硬件状态
/* save current hardware state */
void (*fb_save_state)(struct fb_info *info);
恢复被保存的硬件状态
/* restore saved state */
void (*fb_restore_state)(struct fb_info *info);
通过fb_info获得framebuffer的能力
/* get capability given var */
void (*fb_get_caps)(struct fb_info *info, struct fb_blit_caps *caps,
struct fb_var_screeninfo *var);
};
(3)、
fb_fix_screeninfo结构体中,记录了用户不能修改的固定显示控制器参数。这些固定的参数如缓冲区的物理地址、缓冲区的长度等等。
struct fb_fix_screeninfo {
char id[16]; /* identification string eg "TT Builtin" */
字符串形式的标识符
unsigned long smem_start;/* Start of frame buffer mem */
/* (physical address) */
fb缓存的开始位置
__u32 smem_len;/* Length of frame buffer mem */
fb缓存的长度
__u32 type; /* see FB_TYPE_* */
FB_TYPE_*类型
__u32 type_aux;/* Interleave for interleaved Planes */
分界
__u32 visual; /* see FB_VISUAL_* */
屏幕使用的色彩模式
__u16 xpanstep;/* zero if no hardware panning */
如果没有硬件panning ,赋0
__u16 ypanstep;/* zero if no hardware panning */
__u16 ywrapstep;/* zero if no hardware ywrap */
1行的字节数
__u32 line_length;/* length of a line in bytes */
内存映射I/O的开始位置
unsigned long mmio_start;/* Start of Memory Mapped I/O */
/* (physical address) */
内存映射I/O的长度
__u32 mmio_len;/* Length of Memory Mapped I/O */
__u32 accel; /* Indicate to driver which */
/* specific chip/card we have*/
__u16 reserved[3];/* Reserved for future compatibility */
};
(4)、
fb_var_screeninfo结构体中存储了用户可以修改的显示器控制参数,例如屏幕分辨率、透明度等等。
struct fb_var_screeninfo {
__u32 xres; /* visible resolution */
__u32 yres;
可见解析度,即分辨率
__u32 xres_virtual;/* virtual resolution */
__u32 yres_virtual;
虚拟解析度
__u32 xoffset;/* offset from virtual to visible */
__u32 yoffset;/* resolution */
虚拟到可见之间的偏移
__u32 bits_per_pixel;/* guess what */
每像素位数,BPP
__u32 grayscale;/* != 0 Graylevels instead of colors */
非0时指灰度
struct fb_bitfield red;/* bitfield in fb mem if true color, */
struct fb_bitfield green;/* else only length is significant */
struct fb_bitfield blue;
fb缓存的RGB位域
struct fb_bitfield transp;/* transparency */
透明度
__u32 nonstd; /* != 0 Non standard pixel format */
!= 0 非标准像素格式
__u32 activate;/* see FB_ACTIVATE_* */
__u32 height; /* height of picture in mm */
屏幕的高度
__u32 width; /* width of picture in mm */
屏幕的宽度
__u32 accel_flags;/* (OBSOLETE) see fb_info.flags */
fb_info的标志
/* Timing: All values in pixclocks, except pixclock (of course) */
__u32 pixclock;/* pixel clock in ps (pico seconds) */
/* 像素时钟(皮秒) */
__u32 left_margin;/* time from sync to picture */
行切换:从同步到绘图之间的延迟
__u32 right_margin;/* time from picture to sync */
行切换:从绘图到同步之间的延迟
__u32 upper_margin;/* time from sync to picture */
帧切换:从同步到绘图之间的延迟
__u32 lower_margin;
帧切换:从绘图到同步之间的延迟
__u32 hsync_len;/* length of horizontal sync */
水平同步的长度
__u32 vsync_len;/* length of vertical sync */
垂直同步的长度
__u32 sync; /* see FB_SYNC_* */
__u32 vmode; /* see FB_VMODE_* */
__u32 rotate; /* angle we rotate counter clockwise */
顺时钟旋转的角度
__u32 reserved[5];/* Reserved for future compatibility */
};
(5)、
fb_cmap结构体中记录了颜色板信息,即调色板信息。,用户空间可以通过ioctl()的FBIOGETCMAP和 FBIOPUTCMAP命令读取或设定颜色表。
struct fb_cmap {
__u32 start; /* First entry */第一个元素的入口
__u32 len; /* Number of entries */元素个数
__u16 *red; /* Red values */红色、绿色、蓝色
__u16 *green;
__u16 *blue;
__u16 *transp;/* transparency, can be NULL */透明度
};
上面这些结构体之间有什么关系呢?看下图:
(6)、
fb_bitfield 结构体描述每一像素显示缓冲区的组织方式,包含位域偏移、位域长度和MSB 指示,
struct fb_bitfield {
__u32 offset; /* beginning of bitfield */
位域偏移
__u32 length; /* length of bitfield */
位域长度
__u32 msb_right;/* != 0 : Most significant bit is */
/* right */
MSB
};
Fbmem.c文件
这一篇来说下linux帧缓冲设备驱动的上层建筑Fbmem.c文件。
1、先上第一道菜:
1.1、那我们现在来说Fbmem.c (linux2.6.28driversvideo)文件中的应用程序访问帧缓冲设备的接口,大家对下面这些应该都不陌生吧。:
/**
* fbmem_init - init frame buffer subsystem
*
* Initialize the frame buffer subsystem.
*
* NOTE: This function is _only_ to be called by drivers/char/mem.c.
*
*/
static int __init
fbmem_init(void)
{
proc_create("fb", 0, NULL, &fb_proc_fops);看名字就知道与proc文件系统有关,其中fb_proc_fops是个file_operations的结构体,在同一个文件中定义。
static const struct file_operations fb_proc_fops = {
.owner = THIS_MODULE,
.open = proc_fb_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
对应的 open函数实例proc_fb_open源码如下:
static int proc_fb_open(struct inode *inode, struct file *file)
{
return seq_open(file, &proc_fb_seq_ops);
}
同样proc_fb_seq_ops是seq_operations类型的结构体实例。如下所示:
static const struct seq_operations proc_fb_seq_ops = {
.start = fb_seq_start,
.next = fb_seq_next,
.stop = fb_seq_stop,
.show = fb_seq_show,
};
这些函数都在这个文件中被定义,现在想想fbmem.c文件已经被我们去掉很多东西了。
if (register_chrdev(FB_MAJOR,"fb",&fb_fops))这个函数就太常见了,字符设备一出现,就肯定会出现,不过以前我们有时看到的是分开的那三个函数,现在把它们和在一起了。
其中fb_fops是file_operations结构体的实例,如下所示:
static const struct file_operations fb_fops = {
.owner = THIS_MODULE,
.read = fb_read,
.write = fb_write,
.unlocked_ioctl = fb_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = fb_compat_ioctl,
#endif
.mmap = fb_mmap,
.open = fb_open,
.release = fb_release,
#ifdef HAVE_ARCH_FB_UNMAPPED_AREA
.get_unmapped_area = get_fb_unmapped_area,
#endif
#ifdef CONFIG_FB_DEFERRED_IO
.fsync = fb_deferred_io_fsync,
#endif
};
printk("unable to get major %d for fb devsn", FB_MAJOR);
fb_class = class_create(THIS_MODULE, "graphics");创建一个类
if (IS_ERR(fb_class)) {
printk(KERN_WARNING "Unable to create fb class; errno = %ldn", PTR_ERR(fb_class));
fb_class = NULL;
}
return 0;
}
module_init(fbmem_init);
static void __exit
fbmem_exit(void) 做和init函数相反的事。
{
remove_proc_entry("fb", NULL);
class_destroy(fb_class);
unregister_chrdev(FB_MAJOR, "fb");
}
module_exit(fbmem_exit);
2、在Fbmem.c (linux2.6.28driversvideo)文件中还有很多函数是关于LOGO显示的,这个我们也不用关心,所以其实在这个文件中我们主要关心的就是struct file_operations fb_fops这个结构体中的函数。
2.1、简要分析几个struct file_operations fb_fops结构体中的函数:
先来看fb_read函数,源码如下:
static ssize_t
fb_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
unsigned long p = *ppos;
struct inode *inode = file->f_path.dentry->d_inode;
int fbidx = iminor(inode);这个函数看下面的源码,应该知道它的作用了:
static inline unsigned iminor(const struct inode *inode)
{
return MINOR(inode->i_rdev);
}
struct fb_info *info = registered_fb[fbidx];这个全局的结构数组,我们以前说过
u32 *buffer, *dst;
u32 __iomem *src;
int c, i, cnt = 0, err = 0;
unsigned long total_size;
if (!info || ! info->screen_base)
return -ENODEV;
if (info->state != FBINFO_STATE_RUNNING)
return -EPERM;
if (info->fbops->fb_read) 如果定义了fb_read函数,就调用具体的read函数,也就是我们在前面说过的
fb_ops s3cfb_ops结构体中定义的函数。
return info->fbops->fb_read(info, buf, count, ppos);
struct fb_ops s3cfb_ops = {
.owner= THIS_MODULE,
.fb_check_var = s3cfb_check_var,
.fb_set_par = s3cfb_set_par,
.fb_blank = s3cfb_blank,
.fb_pan_display= s3cfb_pan_display,
.fb_setcolreg = s3cfb_setcolreg,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
.fb_cursor = soft_cursor,
.fb_ioctl = s3cfb_ioctl,
};
total_size = info->screen_size;
if (total_size == 0)
total_size = info->fix.smem_len;
if (p >= total_size)
return 0;
if (count >= total_size)
count = total_size;
if (count + p > total_size)
count = total_size - p;
buffer = kmalloc((count > PAGE_SIZE) ? PAGE_SIZE : count,
GFP_KERNEL);
if (!buffer)
return -ENOMEM;
src = (u32 __iomem *) (info->screen_base + p);
if (info->fbops->fb_sync)
info->fbops->fb_sync(info);
while (count) {
c = (count > PAGE_SIZE) ? PAGE_SIZE : count;
dst = buffer;
for (i = c >> 2; i--; )
*dst++ = fb_readl(src++);
if (c & 3) {
u8 *dst8 = (u8 *) dst;
u8 __iomem *src8 = (u8 __iomem *) src;
for (i = c & 3; i--;)
*dst8++ = fb_readb(src8++);
src = (u32 __iomem *) src8;
}
if (copy_to_user(buf, buffer, c)) {
err = -EFAULT;
break;
}
*ppos += c;
buf += c;
cnt += c;
count -= c;
}
kfree(buffer);
return (err) ? err : cnt;
}
2.2、fb_ioctl函数:源码如下:
static long fb_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
__acquires(&info->lock)
__releases(&info->lock)
{
struct inode *inode = file->f_path.dentry->d_inode;
int fbidx = iminor(inode);
struct fb_info *info;
long ret;
info = registered_fb[fbidx];
mutex_lock(&info->lock);
ret = do_fb_ioctl(info, cmd, arg);
此函数源码如下:
static long do_fb_ioctl(struct fb_info *info, unsigned int cmd,
unsigned long arg)
{
struct fb_ops *fb;
struct fb_var_screeninfo var;
struct fb_fix_screeninfo fix;
struct fb_con2fbmap con2fb;
struct fb_cmap_user cmap;
struct fb_event event;
void __user *argp = (void __user *)arg;
long ret = 0;
fb = info->fbops;
if (!fb)
return -ENODEV;
switch (cmd) {
case FBIOGET_VSCREENINFO: 获得可变的屏幕参数
ret = copy_to_user(argp, &info->var,
sizeof(var)) ? -EFAULT : 0;
break;
case FBIOPUT_VSCREENINFO:设置可变的屏幕参数
if (copy_from_user(&var, argp, sizeof(var))) {
ret = -EFAULT;
break;
}
acquire_console_sem();
info->flags |= FBINFO_MISC_USEREVENT;
ret = fb_set_var(info, &var);
info->flags &= ~FBINFO_MISC_USEREVENT;
release_console_sem();
if (ret == 0 && copy_to_user(argp, &var, sizeof(var)))
ret = -EFAULT;
break;
case FBIOGET_FSCREENINFO:获得固定的屏幕参数设置
ret = copy_to_user(argp, &info->fix,
sizeof(fix)) ? -EFAULT : 0;
break;
case FBIOPUTCMAP:设置颜色表
if (copy_from_user(&cmap, argp, sizeof(cmap)))
ret = -EFAULT;
else
ret = fb_set_user_cmap(&cmap, info);
break;
case FBIOGETCMAP: 获得颜色表
if (copy_from_user(&cmap, argp, sizeof(cmap)))
ret = -EFAULT;
else
ret = fb_cmap_to_user(&info->cmap, &cmap);
break;
case FBIOPAN_DISPLAY:
if (copy_from_user(&var, argp, sizeof(var))) {
ret = -EFAULT;
break;
}
acquire_console_sem();
ret = fb_pan_display(info, &var);
release_console_sem();
if (ret == 0 && copy_to_user(argp, &var, sizeof(var)))
ret = -EFAULT;
break;
case FBIO_CURSOR:
ret = -EINVAL;
break;
case FBIOGET_CON2FBMAP:
if (copy_from_user(&con2fb, argp, sizeof(con2fb)))
ret = -EFAULT;
else if (con2fb.console < 1 || con2fb.console > MAX_NR_CONSOLES)
ret = -EINVAL;
else {
con2fb.framebuffer = -1;
event.info = info;
event.data = &con2fb;
fb_notifier_call_chain(FB_EVENT_GET_CONSOLE_MAP,
&event);
ret = copy_to_user(argp, &con2fb,
sizeof(con2fb)) ? -EFAULT : 0;
}
break;
case FBIOPUT_CON2FBMAP:
if (copy_from_user(&con2fb, argp, sizeof(con2fb))) {
ret = -EFAULT;
break;
}
if (con2fb.console < 1 || con2fb.console > MAX_NR_CONSOLES) {
ret = -EINVAL;
break;
}
if (con2fb.framebuffer < 0 || con2fb.framebuffer >= FB_MAX) {
ret = -EINVAL;
break;
}
if (!registered_fb[con2fb.framebuffer])
request_module("fb%d", con2fb.framebuffer);
if (!registered_fb[con2fb.framebuffer]) {
ret = -EINVAL;
break;
}
event.info = info;
event.data = &con2fb;
ret = fb_notifier_call_chain(FB_EVENT_SET_CONSOLE_MAP,
&event);
break;
case FBIOBLANK:
acquire_console_sem();
info->flags |= FBINFO_MISC_USEREVENT;
ret = fb_blank(info, arg);
info->flags &= ~FBINFO_MISC_USEREVENT;
release_console_sem();
break;;
default:
if (fb->fb_ioctl == NULL)
ret = -ENOTTY;
else
ret = fb->fb_ioctl(info, cmd, arg);
}
return ret;
}
mutex_unlock(&info->lock);
return ret;
}
fb_mem.c文件分析到这里差不多也结束了,当然,我们还有很多没分析,只是分析了一小部分,但是这个文件的大致结构和作用我们应该清楚了。
在这个文件中其他重要的函数,我们都没有分析,如:fb_mmap、register_framebuffer、unregister_framebuffer函数等等,后面这两个函数,我们前面有涉及,所以,要走的路还有很长。
最后
以上就是儒雅雪糕为你收集整理的Linux中LCD设备驱动framebuffer(帧缓冲)的全部内容,希望文章能够帮你解决Linux中LCD设备驱动framebuffer(帧缓冲)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复