共享单车需求量登记分类及影响因素分析——基于机器学习模型的比较分析作者:Yiyi Hu关于作者
其次,Xgboost 支持并行处理,众所周知,决策树的学习最耗时的一个步骤是对特征的值进行排序,Xgboost 在训练之前预先对数据进行了排序,然后保存为 block 结构,后面的迭代中重复使用这个结构,大大减小了计算量。分析分类结果以及各因素的重要性发现,时间、风速、湿度、温度四个因素对共享单车使用量存在较高的影响,因此维修部门可以选在凌晨阶段,或者风速较大、温度过低或过高的时期对共享单车进行合理的批量维修,避开市民用车高峰,保证市民出行效率以及用车安全。因此,为了提高结果的准确性,选择删去。