BP神经网络模型与学习算法BP神经网络模型BP网络的标准学习算法
在感知器神经网络模型与线性神经网络模型学习算法中,理想输出与实际输出之差被用来估计神经元连接权值误差。当解决线性不可分问题而引入多级网络后,如何估计网络隐含层神经元的误差就成了一大难题。因为在实际中,无法知道隐含层的任何神经元的理想输出值。1985年Rumelhart、McClelland提出了BP网络的误差反向后传(BP)学习算法,实现了Minsky设想的多层神经网络模型。BP算法在于利用输出后的