决策树的剪枝处理决策树的剪枝处理
决策树的剪枝处理剪枝是决策树学习算法解决过拟合的主要手段。在决策树的学习过程中,为了尽可能地正确分类训练样本,节点划分得不断重复,有时候会造成决策树的分支过多,这时候就是算法在训练样本上学得太好,导致把训练集本身的一些特点作为所有数据所有数据都有的一般性质(实际上新数据中可能没有这些特点),从而导致过拟合。因此可以主动去掉一些分支来降低过拟合的风险。 决策树的剪枝分为 预剪枝 和 ...