介绍常见的Loss损失函数SSE(和方差)MSE(均方误差,mean_squared_error)二分类交叉熵损失(binary_crossentropy)多类交叉熵损失(categorical_crossentropy)多类交叉熵损失(sparse_categorical_crossentropy)KL散度(相对熵)Focal loss
假设有m个数据输入X:x1,x2...xmX:x^1,x^2...x^mX:x1,x2...xm模型预测值为Y:y1,y2...ymY:y^1,y^2...y^mY:y1,y2...ym模型真实值为Y^:y^1,y^2...y^m\hat{Y}:\hat{y}^1,\hat{y}^2...\hat{y}^mY^:y^1,y^2...y^mSSE(和方差)SSE(Y,Y^)=∑i=1m(y^i−yi)2SSE(Y,\hat{Y})=\sum_{i=1}^{m}(\hat{y}_i -y_i)