概述
MySimHash:
import com.hankcs.hanlp.seg.common.Term;
import com.hankcs.hanlp.tokenizer.StandardTokenizer;
import org.apache.commons.lang3.StringUtils;
import org.jsoup.Jsoup;
import org.jsoup.safety.Whitelist;
import java.math.BigInteger;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* simhash 算法计算两篇文章相似度
*/
public class MySimHash {
private String tokens; //字符串
private BigInteger strSimHash;//字符产的hash值
private int hashbits = 64; // 分词后的hash数;
public MySimHash(String tokens) {
this.tokens = tokens;
this.strSimHash = this.simHash();
}
public MySimHash(String tokens, int hashbits) {
this.tokens = tokens;
this.hashbits = hashbits;
this.strSimHash = this.simHash();
}
/**
* 清除html标签
*
* @param content
* @return
*/
private String cleanResume(String content) {
// 若输入为HTML,下面会过滤掉所有的HTML的tag
content = Jsoup.clean(content, Whitelist.none());
content = StringUtils.lowerCase(content);
String[] strings = {" ", "n", "r", "t", "\r", "\n", "\t", " "};
for (String s : strings) {
content = content.replaceAll(s, "");
}
return content;
}
/**
* 这个是对整个字符串进行hash计算
*
* @return
*/
private BigInteger simHash() {
tokens = cleanResume(tokens); // cleanResume 删除一些特殊字符
int[] v = new int[this.hashbits];
List<Term> termList = StandardTokenizer.segment(this.tokens); // 对字符串进行分词
//对分词的一些特殊处理 : 比如: 根据词性添加权重 , 过滤掉标点符号 , 过滤超频词汇等;
Map<String, Integer> weightOfNature = new HashMap<String, Integer>(); // 词性的权重
weightOfNature.put("n", 2); //给名词的权重是2;
Map<String, String> stopNatures = new HashMap<String, String>();//停用的词性 如一些标点符号之类的;
stopNatures.put("w", ""); //
int overCount = 5; //设定超频词汇的界限 ;
Map<String, Integer> wordCount = new HashMap<String, Integer>();
for (Term term : termList) {
String word = term.word; //分词字符串
String nature = term.nature.toString(); // 分词属性;
// 过滤超频词
if (wordCount.containsKey(word)) {
int count = wordCount.get(word);
if (count > overCount) {
continue;
}
wordCount.put(word, count + 1);
} else {
wordCount.put(word, 1);
}
// 过滤停用词性
if (stopNatures.containsKey(nature)) {
continue;
}
// 2、将每一个分词hash为一组固定长度的数列.比如 64bit 的一个整数.
BigInteger t = this.hash(word);
for (int i = 0; i < this.hashbits; i++) {
BigInteger bitmask = new BigInteger("1").shiftLeft(i);
// 3、建立一个长度为64的整数数组(假设要生成64位的数字指纹,也可以是其它数字),
// 对每一个分词hash后的数列进行判断,如果是1000...1,那么数组的第一位和末尾一位加1,
// 中间的62位减一,也就是说,逢1加1,逢0减1.一直到把所有的分词hash数列全部判断完毕.
int weight = 1; //添加权重
if (weightOfNature.containsKey(nature)) {
weight = weightOfNature.get(nature);
}
if (t.and(bitmask).signum() != 0) {
// 这里是计算整个文档的所有特征的向量和
v[i] += weight;
} else {
v[i] -= weight;
}
}
}
BigInteger fingerprint = new BigInteger("0");
for (int i = 0; i < this.hashbits; i++) {
if (v[i] >= 0) {
fingerprint = fingerprint.add(new BigInteger("1").shiftLeft(i));
}
}
return fingerprint;
}
/**
* 对单个的分词进行hash计算;
*
* @param source
* @return
*/
private BigInteger hash(String source) {
if (source == null || source.length() == 0) {
return new BigInteger("0");
} else {
/**
* 当sourece 的长度过短,会导致hash算法失效,因此需要对过短的词补偿
*/
while (source.length() < 3) {
source = source + source.charAt(0);
}
char[] sourceArray = source.toCharArray();
BigInteger x = BigInteger.valueOf(((long) sourceArray[0]) << 7);
BigInteger m = new BigInteger("1000003");
BigInteger mask = new BigInteger("2").pow(this.hashbits).subtract(new BigInteger("1"));
for (char item : sourceArray) {
BigInteger temp = BigInteger.valueOf((long) item);
x = x.multiply(m).xor(temp).and(mask);
}
x = x.xor(new BigInteger(String.valueOf(source.length())));
if (x.equals(new BigInteger("-1"))) {
x = new BigInteger("-2");
}
return x;
}
}
/**
* 计算海明距离,海明距离越小说明越相似;
*
* @param other
* @return
*/
public int hammingDistance(MySimHash other) {
BigInteger m = new BigInteger("1").shiftLeft(this.hashbits).subtract(
new BigInteger("1"));
BigInteger x = this.strSimHash.xor(other.strSimHash).and(m);
int tot = 0;
while (x.signum() != 0) {
tot += 1;
x = x.and(x.subtract(new BigInteger("1")));
}
return tot;
}
public double getSemblance(MySimHash s2) {
double i = (double) this.hammingDistance(s2);
return 1 - i / this.hashbits;
}
public static void main(String[] args) {
// String s1 = "心有栅栏,然后青藤爬过,那些小秘密点缀其中,像叶片下小憩的蝴蝶,做梦一般,只能用花粉形容。心有玉阶,满阶是香囊佩瑶,满阶是锦言妙计,还有玲珑小贝和神秘念珠。于是孤独不再降临,花瓶不再寂寞。心有圣殿,供奉着高贵,尊严、善良、理想和追求……这都是些美丽的神灵。由此,而不可侵犯;由此,而拥有世界和自己。";
// String s2 = "aaa";
// long l3 = System.currentTimeMillis();
// MySimHash hash1 = new MySimHash(s1, 64);
// MySimHash hash2 = new MySimHash(s2, 64);
// System.out.println("======================================");
// System.out.println("海明距离:" + hash1.hammingDistance(hash2));
// System.out.println("文本相似度:" + hash1.getSemblance(hash2));
// long l4 = System.currentTimeMillis();
// System.out.println(l4 - l3);
// System.out.println("======================================");
}
需要导入的jar
<!--simhash 算法计算两篇文章相似度--> <!-- https://mvnrepository.com/artifact/com.hankcs/hanlp --> <dependency> <groupId>com.hankcs</groupId> <artifactId>hanlp</artifactId> <version>portable-1.8.2</version> </dependency> <!-- https://mvnrepository.com/artifact/org.jsoup/jsoup --> <dependency> <groupId>org.jsoup</groupId> <artifactId>jsoup</artifactId> <version>1.14.3</version> </dependency>
最后
以上就是淡定摩托为你收集整理的simhash算法计算两篇文章相似度(弄来玩玩)的全部内容,希望文章能够帮你解决simhash算法计算两篇文章相似度(弄来玩玩)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复