我是靠谱客的博主 自然雪糕,最近开发中收集的这篇文章主要介绍自然语言处理系列十八》中文分词》分词工具实战》Java的HanLP分词自然语言处理系列十八总结,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《分布式机器学习实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】

文章目录

  • 自然语言处理系列十八
    • 分词工具实战
      • Java的HanLP分词
  • 总结

自然语言处理系列十八

分词工具实战

分词工具有Java、Python、C++实现的,这里给大家推荐目前最流行的分词工具。CRF++是采用C++语言编写,但可以用Python来调用。HanLP是用Java编写的,也可以用Python调用。IK分词和mmseg4j分词也是用Java编写,经常集成在搜索引擎Solr和Elasticsearch里。下面分别进行讲解这几个开源分词包。

Java的HanLP分词

HanLP是一系列模型与算法组成的NLP工具包,使用Java语言开发,并支持Python语言调用,目标是普及自然语言处理在生产环境中的应用。HanLP具备功能完善、性能高效、架构清晰、语料时新、可自定义的特点。
HanLP提供下列功能:
中文分词:
HMM-Bigram(速度与精度最佳平衡;一百兆内存)
最短路分词、N-最短路分词
由字构词(侧重精度,全世界最大语料库,可识别新词;适合NLP任务)
感知机分词、CRF分词
词典分词(侧重速度,每秒数千万字符;省内存)
极速词典分词
所有分词器都支持:
索引全切分模式
用户自定义词典
兼容繁体中文
训练用户自己的领域模型
词性标注:
HMM词性标注(速度快)
感知机词性标注、CRF词性标注(精度高)
命名实体识别:
基于HMM角色标注的命名实体识别 (速度快)
中国人名识别、音译人名识别、日本人名识别、地名识别、实体机构名识别
基于线性模型的命名实体识别(精度高)
感知机命名实体识别、CRF命名实体识别
关键词提取:
TextRank关键词提取
自动摘要:
TextRank自动摘要
短语提取:
基于互信息和左右信息熵的短语提取
拼音转换:
多音字、声母、韵母、声调
简繁转换:
简繁分歧词(简体、繁体、臺灣正體、香港繁體)
文本推荐:
语义推荐、拼音推荐、字词推荐
依存句法分析:
基于神经网络的高性能依存句法分析器
基于ArcEager转移系统的柱搜索依存句法分析器
文本分类:
情感分析
文本聚类:
KMeans、Repeated Bisection、自动推断聚类数目k
word2vec:
词向量训练、加载、词语相似度计算、语义运算、查询、KMeans聚类
文档语义相似度计算
语料库工具:
部分默认模型训练自小型语料库,鼓励用户自行训练。所有模块提供训练接口,语料可参考98年人民日报语料库。
在提供丰富功能的同时,HanLP内部模块坚持低耦合、模型坚持惰性加载、服务坚持静态提供、词典坚持明文发布,使用非常方便。默认模型训练自全世界最大规模的中文语料库,同时自带一些语料处理工具,帮助用户训练自己的模型。支持自定义词典。
下面我们通过Java代码来演示HanLP的几种中文分词使用,代码如下所示:
【代码6.14】 PrefixSpanJob.scala

package com.chongdianleme.job;
import com.hankcs.hanlp.HanLP;
import com.hankcs.hanlp.seg.CRF.CRFSegment;
import com.hankcs.hanlp.seg.Dijkstra.DijkstraSegment;
import com.hankcs.hanlp.seg.NShort.NShortSegment;
import com.hankcs.hanlp.seg.Segment;
import com.hankcs.hanlp.seg.common.Term;
import com.hankcs.hanlp.tokenizer.IndexTokenizer;
import com.hankcs.hanlp.tokenizer.NLPTokenizer;
import com.hankcs.hanlp.tokenizer.SpeedTokenizer;
import com.hankcs.hanlp.tokenizer.StandardTokenizer;
import java.util.List;
/**
* Created by 充电了么App - 陈敬雷
* 充电了么App官网:http://chongdianleme.com/
* 充电了么App - 专注上班族职业技能提升充电学习的在线教育平台
* HanLP中文分词功能演示,开源地址:https://github.com/hankcs/HanLP
*/
public class HanLPDemo {
public static void main(String[] args) {
segment();//常用默认分词:HanLP.segment
standardSegment();//标准分词:StandardTokenizer.segment
NLPSegment();// NLP分词
indexTokenizerSegment();//索引分词
nShortSegment();//N-最短路径分词
CRFSegment();//CRF分词
highSpeedSegment();//极速词典分词
}
/**
*1.常用默认分词:HanLP.segment
* HanLP对词典的数据结构进行了长期的优化,可以应对绝大多数场景。哪怕HanLP的词典上百兆也无需担心,因为在内存中被精心压缩过。
* 如果内存非常有限,请使用小词典。HanLP默认使用大词典,同时提供小词典。全部词典和模型都是惰性加载的,不使用的模型相当于不存在,可以自由删除。
* HanLP.segment其实是对StandardTokenizer.segment标准分词的包装,和标准分词的结果是一样的。
*/
public static void segment() {
String s = "分布式机器学习实战(人工智能科学与技术丛书)深入浅出,逐步讲解分布式机器学习的框架及应用配套个性化推荐算法系统、人脸识别、对话机器人等实战项目。";
List<Term> termList =HanLP.segment(s);
System.out.println(termList);
//输出结果如下:分词结果包含词性,比如分布式的词性b代表区别词,机器学习的词性gi代表计算机相关词汇,实战的词性n代表名称,
// 后面每个词都返回了对应的词性,这里不一一举例,下章我们会单独讲词性标注,列出所有的词性表。
//[分布式/b, 机器学习/gi, 实战/n, (/w, 人工智能/n, 科学/n, 与/p, 技术/n, 丛书/n, )/w, 深入浅出/i, ,/w, 逐步/d, 讲解/v, 分布式/b, 机器学习/gi, 的/uj, 框架/n, 及/c, 应用/vn, 配套/a, 个性化/v, 推荐/v, 算法/n, 系统/n, 、/w, 人脸/n, 识别/v, 、/w, 对话/vn, 机器人/n, 等/u, 实战/n, 项目/n, 。/w]
}
/**
*2.标准分词:StandardTokenizer.segment
* HanLP中有一系列“开箱即用”的静态分词器,以Tokenizer结尾,在接下来的例子中会继续介绍。
* HanLP.segment其实是对StandardTokenizer.segment的包装。
* 分词结果包含词性,每个词性的意思下章详细讲解。
*/
public static void standardSegment() {
String s = "分布式机器学习实战(人工智能科学与技术丛书)深入浅出,逐步讲解分布式机器学习的框架及应用配套个性化推荐算法系统、人脸识别、对话机器人等实战项目。";
List<Term> termList = StandardTokenizer.segment(s);
System.out.println(termList);
termList = HanLP.segment(s);
//输出结果如下:可以看到和上面的HanLP.segment结果是一样的。
//[分布式/b, 机器学习/gi, 实战/n, (/w, 人工智能/n, 科学/n, 与/p, 技术/n, 丛书/n, )/w, 深入浅出/i, ,/w, 逐步/d, 讲解/v, 分布式/b, 机器学习/gi, 的/uj, 框架/n, 及/c, 应用/vn, 配套/a, 个性化/v, 推荐/v, 算法/n, 系统/n, 、/w, 人脸/n, 识别/v, 、/w, 对话/vn, 机器人/n, 等/u, 实战/n, 项目/n, 。/w]
}
/**
*3.NLP分词:NLPTokenizer.segment
NLP分词NLPTokenizer会执行词性标注和命名实体识别,由结构化感知机序列标注框架支撑。默认模型训练自9970万字的大型综合语料库,是已知范围内全世界最大的中文分词语料库。
语料库规模决定实际效果,面向生产环境的语料库应当在千万字量级。用户可以在自己的语料上训练新模型以适应新领域、识别新的命名实体。
*/
public static void NLPSegment() {
String s = "分布式机器学习实战(人工智能科学与技术丛书)深入浅出,逐步讲解分布式机器学习的框架及应用配套个性化推荐算法系统、人脸识别、对话机器人等实战项目。";
System.out.println(NLPTokenizer.segment(s));
//输出结果如下:
//[分布式/b, 机器学习/gi, 实战/n, (/w, 人工智能/n, 科学/n, 与/p, 技术/n, 丛书/n, )/w, 深入浅出/i, ,/w, 逐步/d, 讲解/v, 分布式/b, 机器学习/gi, 的/uj, 框架/n, 及/c, 应用/vn, 配套/a, 个性化/v, 推荐/v, 算法/n, 系统/n, 、/w, 人脸/n, 识别/v, 、/w, 对话/vn, 机器人/n, 等/u, 实战/n, 项目/n, 。/w]
}
/**
*4.索引分词:IndexTokenizer.segment
索引分词IndexTokenizer是面向搜索引擎的分词器,能够对长词全切分,另外通过term.offset可以获取单词在文本中的偏移量。
任何分词器都可以通过基类Segment的enableIndexMode方法激活索引模式。
*/
public static void indexTokenizerSegment() {
String s = "分布式机器学习实战(人工智能科学与技术丛书)深入浅出,逐步讲解分布式机器学习的框架及应用配套个性化推荐算法系统、人脸识别、对话机器人等实战项目。";
List<Term> termList = IndexTokenizer.segment(s);
for (Term term : termList)
{
System.out.println(term + " [" + term.offset + ":" + (term.offset + term.word.length()) + "]");
}
//输出结果如下:
/**
分布式/b [0:3]
分布/v [0:2]
机器学习/gi [3:7]
机器/n [3:5]
学习/v [5:7]
实战/n [7:9]
(/w [9:10]
人工智能/n [10:14]
人工/n [10:12]
智能/n [12:14]
科学/n [14:16]
与/p [16:17]
技术/n [17:19]
丛书/n [19:21]
)/w [21:22]
深入浅出/i [22:26]
深入/v [22:24]
,/w [26:27]
逐步/d [27:29]
讲解/v [29:31]
分布式/b [31:34]
分布/v [31:33]
机器学习/gi [34:38]
机器/n [34:36]
学习/v [36:38]
的/uj [38:39]
框架/n [39:41]
及/c [41:42]
应用/vn [42:44]
配套/a [44:46]
个性化/v [46:49]
个性/n [46:48]
推荐/v [49:51]
算法/n [51:53]
系统/n [53:55]
、/w [55:56]
人脸/n [56:58]
识别/v [58:60]
、/w [60:61]
对话/vn [61:63]
机器人/n [63:66]
机器/n [63:65]
等/u [66:67]
实战/n [67:69]
项目/n [69:71]
。/w [71:72]
*/
}
/**
* 5.N-最短路径分词:nShortSegment.seg
N最短路分词器NShortSegment比最短路分词器慢,但是效果稍微好一些,对命名实体识别能力更强。
一般场景下最短路分词的精度已经足够,而且速度比N最短路分词器快几倍,请酌情选择。
*/
public static void nShortSegment() {
String s = "分布式机器学习实战(人工智能科学与技术丛书)深入浅出,逐步讲解分布式机器学习的框架及应用配套个性化推荐算法系统、人脸识别、对话机器人等实战项目。";
Segment nShortSegment = new NShortSegment().enableCustomDictionary(false).enablePlaceRecognize(true).enableOrganizationRecognize(true);
Segment shortestSegment = new DijkstraSegment().enableCustomDictionary(false).enablePlaceRecognize(true).enableOrganizationRecognize(true);
System.out.println("N-最短分词:" + nShortSegment.seg(s) + "n最短路分词:" + shortestSegment.seg(s));
//输出结果如下:
//N-最短分词:[分布式/b, 机器/n, 学习/v, 实战/n, (/w, 人工智能/n, 科学/n, 与/p, 技术/n, 丛书/n, )/w, 深入浅出/i, ,/w, 逐步/d, 讲解/v, 分布式/b, 机器/n, 学习/v, 的/uj, 框架/n, 及/c, 应用/vn, 配套/a, 个性化/v, 推荐/v, 算法/n, 系统/n, 、/w, 人脸/n, 识别/v, 、/w, 对话/vn, 机器人/n, 等/u, 实战/n, 项目/n, 。/w]
//最短路分词:[分布式/b, 机器/n, 学习/v, 实战/n, (/w, 人工智能/n, 科学/n, 与/p, 技术/n, 丛书/n, )/w, 深入浅出/i, ,/w, 逐步/d, 讲解/v, 分布式/b, 机器/n, 学习/v, 的/uj, 框架/n, 及/c, 应用/vn, 配套/a, 个性化/v, 推荐/v, 算法/n, 系统/n, 、/w, 人脸/n, 识别/v, 、/w, 对话/vn, 机器人/n, 等/u, 实战/n, 项目/n, 。/w]
}
/**
*6.CRF分词:CRFSegment
CRF对新词有很好的识别能力,但是开销较大。
*/
public static void
CRFSegment() {
String s = "分布式机器学习实战(人工智能科学与技术丛书)深入浅出,逐步讲解分布式机器学习的框架及应用配套个性化推荐算法系统、人脸识别、对话机器人等实战项目。";
Segment crfSegment = new CRFSegment();
System.out.println(crfSegment.seg(s));
}
/**
*7.极速词典分词:SpeedTokenizer.segment
极速分词是词典最长分词,速度极其快,精度一般。在i7-6700K上跑出了4500万字每秒的速度。
*/
public static void
highSpeedSegment() {
String s = "分布式机器学习实战(人工智能科学与技术丛书)深入浅出,逐步讲解分布式机器学习的框架及应用配套个性化推荐算法系统、人脸识别、对话机器人等实战项目。";
System.out.println(SpeedTokenizer.segment(s));
long start = System.currentTimeMillis();
int pressure = 100;
for (int i = 0; i < pressure; ++i)
{
SpeedTokenizer.segment(s);
}
double costTime = (System.currentTimeMillis() - start) / (double)1000;
System.out.printf("分词速度:%.2f字每秒", s.length() * pressure / costTime);
}
}

总结

此文章有对应的配套视频,其它更多精彩文章请大家下载充电了么app,可获取千万免费好课和文章,配套新书教材请看陈敬雷新书:《分布式机器学习实战》(人工智能科学与技术丛书)

【新书介绍】
《分布式机器学习实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】
新书特色:深入浅出,逐步讲解分布式机器学习的框架及应用配套个性化推荐算法系统、人脸识别、对话机器人等实战项目

【新书介绍视频】
分布式机器学习实战(人工智能科学与技术丛书)新书【陈敬雷】
视频特色:重点对新书进行介绍,最新前沿技术热点剖析,技术职业规划建议!听完此课你对人工智能领域将有一个崭新的技术视野!职业发展也将有更加清晰的认识!

【精品课程】
《分布式机器学习实战》大数据人工智能AI专家级精品课程

【免费体验视频】:
人工智能百万年薪成长路线/从Python到最新热点技术

从Python编程零基础小白入门到人工智能高级实战系列课

视频特色: 本系列专家级精品课有对应的配套书籍《分布式机器学习实战》,精品课和书籍可以互补式学习,彼此相互补充,大大提高了学习效率。本系列课和书籍是以分布式机器学习为主线,并对其依赖的大数据技术做了详细介绍,之后对目前主流的分布式机器学习框架和算法进行重点讲解,本系列课和书籍侧重实战,最后讲几个工业级的系统实战项目给大家。 课程核心内容有互联网公司大数据和人工智能那些事、大数据算法系统架构、大数据基础、Python编程、Java编程、Scala编程、Docker容器、Mahout分布式机器学习平台、Spark分布式机器学习平台、分布式深度学习框架和神经网络算法、自然语言处理算法、工业级完整系统实战(推荐算法系统实战、人脸识别实战、对话机器人实战)、就业/面试技巧/职业生涯规划/职业晋升指导等内容。

【充电了么公司介绍】

充电了么App是专注上班族职业培训充电学习的在线教育平台。

专注工作职业技能提升和学习,提高工作效率,带来经济效益!今天你充电了么?

充电了么官网
http://www.chongdianleme.com/

充电了么App官网下载地址
https://a.app.qq.com/o/simple.jsp?pkgname=com.charged.app

功能特色如下:

【全行业职位】 - 专注职场上班族职业技能提升

覆盖所有行业和职位,不管你是上班族,高管,还是创业都有你要学习的视频和文章。其中大数据智能AI、区块链、深度学习是互联网一线工业级的实战经验。

除了专业技能学习,还有通用职场技能,比如企业管理、股权激励和设计、职业生涯规划、社交礼仪、沟通技巧、演讲技巧、开会技巧、发邮件技巧、工作压力如何放松、人脉关系等等,全方位提高你的专业水平和整体素质。

【牛人课堂】 - 学习牛人的工作经验

1.智能个性化引擎:

海量视频课程,覆盖所有行业、所有职位,通过不同行业职位的技能词偏好挖掘分析,智能匹配你目前职位最感兴趣的技能学习课程。

2.听课全网搜索

输入关键词搜索海量视频课程,应有尽有,总有适合你的课程。

3.听课播放详情

视频播放详情,除了播放当前视频,更有相关视频课程和文章阅读,对某个技能知识点强化,让你轻松成为某个领域的资深专家。

【精品阅读】 - 技能文章兴趣阅读

1.个性化阅读引擎:

千万级文章阅读,覆盖所有行业、所有职位,通过不同行业职位的技能词偏好挖掘分析,智能匹配你目前职位最感兴趣的技能学习文章。

2.阅读全网搜索

输入关键词搜索海量文章阅读,应有尽有,总有你感兴趣的技能学习文章。

【机器人老师】 - 个人提升趣味学习

基于搜索引擎和智能深度学习训练,为您打造更懂你的机器人老师,用自然语言和机器人老师聊天学习,寓教于乐,高效学习,快乐人生。

【精短课程】 - 高效学习知识

海量精短牛人课程,满足你的时间碎片化学习,快速提高某个技能知识点。

上一篇:自然语言处理系列十七》中文分词》分词工具实战》Python的Jieba分词
下一篇:自然语言处理系列十九》中文分词》分词工具实战》Java的IK分词

最后

以上就是自然雪糕为你收集整理的自然语言处理系列十八》中文分词》分词工具实战》Java的HanLP分词自然语言处理系列十八总结的全部内容,希望文章能够帮你解决自然语言处理系列十八》中文分词》分词工具实战》Java的HanLP分词自然语言处理系列十八总结所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(47)

评论列表共有 0 条评论

立即
投稿
返回
顶部