我是靠谱客的博主 追寻白开水,最近开发中收集的这篇文章主要介绍2021-08-16LaneGCN,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

LaneGCN

Data

使用到的数据:

feats:坐标都转移到以orig为原点的坐标系下,所有actor的前20个时刻的时序特征(actor_num,3,20) 3=两个坐标+一个标志位(是否pad)

ctrs:坐标都转移到以orig为原点的坐标系下,所有actor的最后一个时刻的位置特征

rot:是一个旋转矩阵,t-1时刻转到t0时刻的,根据theta角计算得到, xy*rot+orig

orig:原始的t0时刻位置,T个时刻里最后一个时刻(t=0)的位置。

gt_preds:每个actor的真实未来30个时刻的坐标

has_preds:每个actor未来30个时刻是否有真实的坐标

trajs: 坐标未转移前的,轨迹的xy坐标

steps:时间步骤,从时间戳变成0——t的

theta: t-1时刻到t0时刻移动过程的旋转角度

graphnum_nodes:当前scence中抽象出来的lane节点个数

ctrs: 经过坐标系处理的 lane中心线坐标

feature:两个中心线坐标的差

turn:向左还是向右转向

control:是否交通管控

intersect:路口

pre:前驱

suc:后继

left:左侧节点

right:右侧节点

u:nodeid

v:nodeid

Argoverse数据的处理过程在data.py文件中,主要是三个函数:

class ArgoDataset(Dataset):
def read_argo_data(self, idx):
city = copy.deepcopy(self.avl[idx].city)
"""TIMESTAMP,TRACK_ID,OBJECT_TYPE,X,Y,CITY_NAME"""
df = copy.deepcopy(self.avl[idx].seq_df)
agt_ts = np.sort(np.unique(df['TIMESTAMP'].values))
mapping = dict()
#按照时间戳排序,并映射,每个对象统计了50个时间戳
for i, ts in enumerate(agt_ts):
mapping[ts] = i
trajs = np.concatenate((
df.X.to_numpy().reshape(-1, 1),
df.Y.to_numpy().reshape(-1, 1)), 1)
#按时间戳统计XY
steps = [mapping[x] for x in df['TIMESTAMP'].values]
steps = np.asarray(steps, np.int64)
objs = df.groupby(['TRACK_ID', 'OBJECT_TYPE']).groups
#轨迹ID,对象类型,Index
keys = list(objs.keys())
#轨迹ID及其类型
obj_type = [x[1] for x in keys]
#所有的类型
#只统计‘AGENT’障碍物的
agt_idx = obj_type.index('AGENT')
idcs = objs[keys[agt_idx]]
#AGENT每个时间戳的Index.
agt_traj = trajs[idcs]
agt_step = steps[idcs]
del keys[agt_idx]
ctx_trajs, ctx_steps = [], []
for key in keys:
#统计其他障碍物的信息,不同的OTHERS,AV等
idcs = objs[key]
ctx_trajs.append(trajs[idcs])
ctx_steps.append(steps[idcs])
data = dict()
data['city'] = city
data['trajs'] = [agt_traj] + ctx_trajs
#坐标未转移前的,轨迹的xy坐标,第一个是AGENT的,后面是其他的
data['steps'] = [agt_step] + ctx_steps
#0-T的时间步,第一个是AGENT的,后面是其他的
return data

第二个函数,处理每个ACTOR的特征:

def get_obj_feats(self, data):
orig = data['trajs'][0][19].copy().astype(np.float32) #第20个时刻的位置
if self.train and self.config['rot_aug']:
theta = np.random.rand() * np.pi * 2.0
else:
pre = data['trajs'][0][18] - orig
#第19个时刻的位置
theta = np.pi - np.arctan2(pre[1], pre[0])
#theta角
rot = np.asarray([
#旋转矩阵
[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]], np.float32)
feats, ctrs, gt_preds, has_preds = [], [], [], []
for traj, step in zip(data['trajs'], data['steps']):
if 19 not in step:
continue
gt_pred = np.zeros((30, 2), np.float32)
has_pred = np.zeros(30, np.bool)
future_mask = np.logical_and(step >= 20, step < 50)
#前20个时刻用来训练和学习,后30个时刻用来预测
post_step = step[future_mask] - 20
post_traj = traj[future_mask]
gt_pred[post_step] = post_traj
#真实的位置
has_pred[post_step] = 1
obs_mask = step < 20
step = step[obs_mask]
traj = traj[obs_mask]
idcs = step.argsort()
step = step[idcs]
traj = traj[idcs]
for i in range(len(step)):
if step[i] == 19 - (len(step) - 1) + i:
break
step = step[i:]
traj = traj[i:]
#特征处理成三维的,前两位是位置特征进行处理后的坐标,第三位表示是否为pad
feat = np.zeros((20, 3), np.float32)
feat[step, :2] = np.matmul(rot, (traj - orig.reshape(-1, 2)).T).T
feat[step, 2] = 1.0
x_min, x_max, y_min, y_max = self.config['pred_range']
if feat[-1, 0] < x_min or feat[-1, 0] > x_max or feat[-1, 1] < y_min or feat[-1, 1] > y_max:
continue
ctrs.append(feat[-1, :2].copy())
feat[1:, :2] -= feat[:-1, :2]
#相邻时刻的位置差
feat[step[0], :2] = 0
#0step(相当于t-T时刻设置为0)
feats.append(feat)
gt_preds.append(gt_pred)
has_preds.append(has_pred)
feats = np.asarray(feats, np.float32)
ctrs = np.asarray(ctrs, np.float32)
gt_preds = np.asarray(gt_preds, np.float32)
has_preds = np.asarray(has_preds, np.bool)
data['feats'] = feats #旋转,位移特征
data['ctrs'] = ctrs #19时刻的位置
data['orig'] = orig
data['theta'] = theta
data['rot'] = rot
data['gt_preds'] = gt_preds
data['has_preds'] = has_preds
return data

处理图网络数据的函数:

def get_lane_graph(self, data):
"""Get a rectangle area defined by pred_range."""
x_min, x_max, y_min, y_max = self.config['pred_range']
radius = max(abs(x_min), abs(x_max)) + max(abs(y_min), abs(y_max))
lane_ids = self.am.get_lane_ids_in_xy_bbox(data['orig'][0], data['orig'][1], data['city'], radius)
#lane_ids是一部分道路的ID,有10个lane_node位置
lane_ids = copy.deepcopy(lane_ids)
lanes = dict()
for lane_id in lane_ids:
lane = self.am.city_lane_centerlines_dict[data['city']][lane_id]
lane = copy.deepcopy(lane)
#有十对位置来描述centerline,一个lane有9个lane_node.
centerline = np.matmul(data['rot'], (lane.centerline - data['orig'].reshape(-1, 2)).T).T
#进行旋转变换
x, y = centerline[:, 0], centerline[:, 1]
if x.max() < x_min or x.min() > x_max or y.max() < y_min or y.min() > y_max:
continue
#筛选出超出范围的
else:
"""Getting polygons requires original centerline"""
polygon = self.am.get_lane_segment_polygon(lane_id, data['city'])
polygon = copy.deepcopy(polygon)
lane.centerline = centerline
lane.polygon = np.matmul(data['rot'], (polygon[:, :2] - data['orig'].reshape(-1, 2)).T).T
lanes[lane_id] = lane
lane_ids = list(lanes.keys())
ctrs, feats, turn, control, intersect = [], [], [], [], []
for lane_id in lane_ids:
lane = lanes[lane_id] #一个lane_seg
ctrln = lane.centerline #10个位置
#ctrln: has num_seg+1 xy,
num_segs = len(ctrln) - 1
t = ctrln[:-1]
t1 = ctrln[1:]
ctrs.append(np.asarray((ctrln[:-1] + ctrln[1:]) / 2.0, np.float32))
#旋转变换之后的中心位置
feats.append(np.asarray(ctrln[1:] - ctrln[:-1], np.float32))
#旋转变换之后的位移差
x = np.zeros((num_segs, 2), np.float32)
#两个标志位表示方向
if lane.turn_direction == 'LEFT': #10
x[:, 0] = 1
elif lane.turn_direction == 'RIGHT': #01
x[:, 1] = 1
else:
pass
turn.append(x)
control.append(lane.has_traffic_control * np.ones(num_segs, np.float32))
intersect.append(lane.is_intersection * np.ones(num_segs, np.float32))
node_idcs = []
count = 0
for i, ctr in enumerate(ctrs):
node_idcs.append(range(count, count + len(ctr)))
#记录所有lane_seg里all_lane_node的id.
count += len(ctr)
num_nodes = count #all_node数量。
pre, suc = dict(), dict()
for key in ['u', 'v']:
pre[key], suc[key] = [], []
for i, lane_id in enumerate(lane_ids):
lane = lanes[lane_id]
#lane_seg
idcs = node_idcs[i] #lane_seg里的lane_node_id,eg:[0-8]
pre['u'] += idcs[1:]
#'u':1-8
pre['v'] += idcs[:-1] #'v':0-7
if lane.predecessors is not None:
for nbr_id in lane.predecessors: #前驱lane_seg
if nbr_id in lane_ids:
#前驱lane_seg_id
j = lane_ids.index(nbr_id)
pre['u'].append(idcs[0])
#补充前驱lane_seg的第一个lane_node
pre['v'].append(node_idcs[j][-1])
#补充前驱lane_seg的最后一个lane_node
suc['u'] += idcs[:-1]
suc['v'] += idcs[1:]
if lane.successors is not None:
for nbr_id in lane.successors:
if nbr_id in lane_ids:
j = lane_ids.index(nbr_id)
suc['u'].append(idcs[-1])
suc['v'].append(node_idcs[j][0])
lane_idcs = []
for i, idcs in enumerate(node_idcs):
lane_idcs.append(i * np.ones(len(idcs), np.int64))
lane_idcs = np.concatenate(lane_idcs, 0)
#类似于[0,0,0,0,0,0,0,0,0,1X9,2X9,…………]
pre_pairs, suc_pairs, left_pairs, right_pairs = [], [], [], []
for i, lane_id in enumerate(lane_ids):
lane = lanes[lane_id]
nbr_ids = lane.predecessors
if nbr_ids is not None:
for nbr_id in nbr_ids:
if nbr_id in lane_ids:
j = lane_ids.index(nbr_id)
pre_pairs.append([i, j])
#两个lane_seg的索引id对
nbr_ids = lane.successors
if nbr_ids is not None:
for nbr_id in nbr_ids:
if nbr_id in lane_ids:
j = lane_ids.index(nbr_id)
suc_pairs.append([i, j])
nbr_id = lane.l_neighbor_id
if nbr_id is not None:
if nbr_id in lane_ids:
j = lane_ids.index(nbr_id)
left_pairs.append([i, j])
nbr_id = lane.r_neighbor_id
if nbr_id is not None:
if nbr_id in lane_ids:
j = lane_ids.index(nbr_id)
right_pairs.append([i, j])
pre_pairs = np.asarray(pre_pairs, np.int64)
suc_pairs = np.asarray(suc_pairs, np.int64)
left_pairs = np.asarray(left_pairs, np.int64)
right_pairs = np.asarray(right_pairs, np.int64)
graph = dict()
graph['ctrs'] = np.concatenate(ctrs, 0)
#二维
graph['num_nodes'] = num_nodes
graph['feats'] = np.concatenate(feats, 0)
#二维
graph['turn'] = np.concatenate(turn, 0)
#二维
graph['control'] = np.concatenate(control, 0)
graph['intersect'] = np.concatenate(intersect, 0)
graph['pre'] = [pre]
graph['suc'] = [suc]
graph['lane_idcs'] = lane_idcs
graph['pre_pairs'] = pre_pairs
graph['suc_pairs'] = suc_pairs
#lanesegment_index0,
lanesegment_index1
graph['left_pairs'] = left_pairs
graph['right_pairs'] = right_pairs
for k1 in ['pre', 'suc']:
for k2 in ['u', 'v']:
graph[k1][0][k2] = np.asarray(graph[k1][0][k2], np.int64)
for key in ['pre', 'suc']:
if 'scales' in self.config and self.config['scales']:
#TODO: delete here
graph[key] += dilated_nbrs2(graph[key][0], graph['num_nodes'], self.config['scales'])
else:
graph[key] += dilated_nbrs(graph[key][0], graph['num_nodes'], self.config['num_scales'])
return graph

最后

以上就是追寻白开水为你收集整理的2021-08-16LaneGCN的全部内容,希望文章能够帮你解决2021-08-16LaneGCN所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(52)

评论列表共有 0 条评论

立即
投稿
返回
顶部