我是靠谱客的博主 坚定火车,最近开发中收集的这篇文章主要介绍数据分析的陷阱 1.辛普森悖论 2. 安斯库姆四重奏,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

1.辛普森悖论

WIKI原始连接:http://zh.wikipedia.org/wiki/%E8%BE%9B%E6%99%AE%E6%A3%AE%E6%82%96%E8%AE%BA

当人们尝试探究两种变量(比如新生录取率与性别)是否具有相关性的时候,会分别对之进行分组研究。然而,在分组比较中都占优势的一方,在总评中有时反而是失势的一方。该现象于20世纪初就有人讨论,但一直到1951年,E.H.辛普森在他发表的论文中阐述此一现象后,该现象才算正式被描述解释。后来就以他的名字命名此悖论,即辛普森悖论

请看下面的例子

一所美国高校的两个学院,分别是法学院和商学院。新学期招生,人们怀疑这两个学院有性别歧视。现作如下统计:

法学院

性别 录取 拒收 总数 录取比例
男生 8 45 53 15.1%
女生 51 101 152 33.6%
合计 59 146 205  

商学院

性别 录取 拒收 总数 录取比例
男生 201 50 251 80.1%
女生 92 9 101 91.1%
合计 293 59 352  

根据上面两个表格来看,女生在两个学院都被优先录取,即女生的录取比率较。现在将两学院的数据汇总:

性别 录取 拒收 总数 录取比例
男生 209 95 304 68.8%
女生 143 110 253 56.5%
合计 352 205 557  

在总评中,女生的录取比率反而比男生

女生单独两个矢量斜率都比男生大,说明它们的比率都比较高。但最后男生总体向量斜率却大于女生

借助一幅向量图可以更好的了解情况(右图)

这个例子说明,简单的将分组数据相加汇总,是不能反映真实情况的。

就上述例子说,导致辛普森悖论有两个前提。

  1. 两个分组的录取率相差很大,就是说法学院录取率很低,而商学院却很高。而同时两种性别的申请者分布比重相反。女性申请者的大部分分布在法学院,相反,男性申请者大部分分布于商学院。结果在数量上来说,拒收率高的法学院拒收了很多的女生,男生虽然有更拒收率,但被拒收的数量却相对不算多。而录取率很高的商学院录取了很多男生,使得最后汇总的时候,男生在数量上反而占优。
  1. 有潜在因素影响着录取情况。就是说,性别并非是录取率高低的唯一因素,甚至可能是毫无影响的。至于在学院中出现的比率差,可能是随机事件。又或者是其他因素作用,比如入学成绩,却刚好出现这种录取比例,使人误认为这是由性别差异而造成的。

为了避免辛普森悖论的出现,就需要斟酌各分组的权重,并乘以一定的系数去消除以分组数据基数差异而造成的影响。同时,我们必需清楚了解情况,以综合考虑是否存在造成此悖论的潜在因素。

2. 安斯库姆四重奏

wiki连接:http://zh.wikipedia.org/wiki/%E5%AE%89%E6%96%AF%E5%BA%93%E5%A7%86%E5%9B%9B%E9%87%8D%E5%A5%8F

安斯库姆四重奏(Anscombe’s quartet)是四组基本的统计特性一致的数据,但由它们绘制出的图表则截然不同。每一组数据都包括了11个(x,y)点。这四组数据由统计学家弗朗西斯·安斯库姆(Francis Anscombe)于1973年构造,他的目的是用来说明在分析数据前先绘制图表的重要性,以及离群值对统计的影响之大。

这四组数据的共同统计特性如下:

性质 数值
x的平均数 9
x的方差 11
y的平均数 7.50(精确到小数点后两位)
y的方差 4.122或4.127(精确到小数点后三位)
xy之间的相关系数 0.816(精确到小数点后三位)
线性回归线 y=3.00 + 0.500x(分别精确到小数点后两位和三位)

qq截图20140714212642

在四幅图中,由第一组数据绘制的图表(左上图)是看起来最“正常”的,可以看出两个随机变量之间的相关性。从第二组数据的图表(右上图)则可以明显地看出两个随机变量间的关系是非线性的。第三组中(左下图),虽然存在着线性关系,但由于一个离群值的存在,改变了线性回归线,也使得相关系数从1降至0.81。最后,在第四个例子中(右下图),尽管两个随机变量间没有线性关系,但仅仅由于一个离群值的存在就使得相关系数变得很高。

爱德华·塔夫特(Edward Tufte)在他所著的《图表设计的现代主义革命》(The Visual Display of Quantitative Information)一书的第一页中,就使用安斯库姆四重奏来说明绘制数据图表的重要性。

四组数据的具体取值如下所示。其中前三组数据的x值都相同。

安斯库姆四重奏
x y x y x y x y
10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

参考文献[编辑]

  • F.J. Anscombe, “Graphs in Statistical Analysis,” American Statistician, 27 (February 1973), 17-21.
  • Tufte, Edward R. (2001). The Visual Display of Quantitative Information, 2nd Edition, Cheshire, CT: Graphics Press. ISBN 0961392142
  • Sangit Chatterjee and Aykut Firat (2007). “Generating Data with Identical Statistics but Dissimilar Graphics: A Follow up to the Anscombe Dataset”, American Statistician, 61(3), 248-254. doi:10.1198/000313007X220057

外部链接[编辑]

  • Department of Physics, University of Toronto
  • Curve fitting, Central Queensland University, Australia
  • Practice Problems, Linear Regression, The Physics Hypertextbook (See practice problem 4.)

来源:www.guzili.com

最后

以上就是坚定火车为你收集整理的数据分析的陷阱 1.辛普森悖论 2. 安斯库姆四重奏的全部内容,希望文章能够帮你解决数据分析的陷阱 1.辛普森悖论 2. 安斯库姆四重奏所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(33)

评论列表共有 0 条评论

立即
投稿
返回
顶部