概述
import pandas as pd
# 要读取处理的excel文件
read_file = '原始.txt'
# 定义要输出的文件名
color_out_file = 'Color_V2.xlsx'
devices_out_file = 'Devices_V2.xlsx'
fixed_out_file = 'Devices_Fixed_Item_V2.xlsx'
other_out_file = 'Devices_Other_Item_V2.xlsx'
parameter_out_file = 'Parameter_V2.xlsx'
"""
初始值
"""
program = ''
lot_number = ''
flow_id = ''
wafer_number = ''
date = ''
times = ''
"""
原始txt处理成标准行列格式
"""
data_line = []
columns = None
with open(read_file, 'r', encoding='utf-8') as fp:
lines = fp.readlines()
for line in lines:
line = line.strip()
# 对最开始的几行,截取数据
if 'Program name' in line:
program = line.replace('Program name', '').strip().split('.')[0]
elif 'Lot number' in line:
lot_number = line.replace('Lot number', '').strip()
flow_id = lot_number.split('@')[-1]
elif 'Wafer number' in line:
wafer_number = line.replace('Wafer number', '').strip()
elif 'Date' in line:
date = line.replace('Date', '').strip()
elif 'Time' in line:
times = line.replace('Time', '').strip()
# 跳过空行
if line == '':
continue
# 跳过Bias行
if 'Bias' in line:
continue
# 列头
if 'No.U' in line:
columns = line.split()
continue
# 只有有列头了,才开始处理
if columns is None:
continue
# 处理limit行
line = line.split()
# print(line)
if 'Limit' in line[0]:
# 插入对应的空格,补全行数据,对齐列
line.insert(1, '')
line.insert(1, '')
line.insert(1, '')
data_line.append(line)
# 转为dataframe处理
df = pd.DataFrame(data_line, columns=columns)
print(df)
limit_u = df.iloc[0, 4:].values
# print(limit_u)
limit_l = df.iloc[1, 4:].values
# print(limit_l)
test_nums = columns[4:]
"""
处理parameter
"""
to_parameter_datas = []
for x in range(len(limit_u)):
u_index = 0
# 找出limit_u中数值和字母的切分点
for i in range(len(limit_u[x]) - 1, -1, -1):
if limit_u[x][i].isdigit():
u_index = i
break
l_index = 0
# 找出limit_l中数值和字母的切分点
for i in range(len(limit_l[x]) - 1, -1, -1):
if limit_l[x][i].isdigit():
l_index = i
break
li_l = limit_l[x][:l_index + 1]
li_u = limit_u[x][:u_index + 1]
li_unit = limit_u[x][u_index + 1:]
parameter_line = ['I', program, flow_id.replace('0', ''), test_nums[x], li_l, li_u, li_unit,
test_nums[x], program, x + 1, li_unit, 1]
to_parameter_datas.append(parameter_line)
"""
处理color
"""
to_color_datas = []
soft_bin = 2
for x in range(len(limit_u)):
color_line = [soft_bin, test_nums[x], 'I', program, flow_id.replace('0', ''), program, '']
to_color_datas.append(color_line)
soft_bin += 1
"""
处理devices
"""
lot_ids = lot_number.split('-')
lot_id = lot_ids[0] + '-' + lot_ids[1]
wafer_id = lot_id + '#' + wafer_number
to_devices_datas = []
for idx, row in df.iterrows():
# 跳过limitU和limitL
if idx < 2:
continue
x = row['X']
y = row['Y']
soft_bin = row['Bin']
part_id = row['No.U']
devices_line = [wafer_id, x, y, 0, '', soft_bin, soft_bin, lot_id, part_id, '', program, date + " " + times]
to_devices_datas.append(devices_line)
"""
处理fixed
"""
to_fixed_datas = []
u_count = 0
bin_count = 0
for idx, row in df.iterrows():
# 跳过limitU和limitL
if idx < 2:
continue
soft_bin = row['Bin']
part_id = row['No.U']
u_count += 1
if int(soft_bin) == 1:
bin_count += 1
fixed_line = [read_file, date + " " + times, wafer_id, lot_id, lot_id, program[:-1], u_count, u_count,
'NULL', lot_ids[2], program, flow_id.replace('0', ''), '',
'p1', 'NULL', 'NULL', 'NULL', 'F1', '25', bin_count]
to_fixed_datas.append(fixed_line)
"""
处理other
"""
to_other_datas = []
u_count = 0
bin_count = 0
for idx, row in df.iterrows():
# 跳过limitU和limitL
if idx < 2:
continue
x = row['X']
y = row['Y']
for test_name in test_nums:
value = row[test_name]
other_line = [wafer_id, x, y, '0', test_name, value, program, lot_id, date + " " + times]
to_other_datas.append(other_line)
"""
输出到文件中
"""
columns = ['SOFT_BIN', 'BIN_NAME', 'PROJECT_TYPE', 'PART_NO', 'PROCESS', 'TEST_PROGRAM', 'COLOR']
out_df = pd.DataFrame(to_color_datas, columns=columns)
out_df.to_excel(color_out_file, index=None)
columns = ['Wafer_id', 'Locate_X', 'Locate_Y', 'Retest', 'T_Time', 'Soft_Bin', 'Hard_Bin', 'lot_id',
'part_id', 'site_num', 'Program', 'Ending_Time']
out_df = pd.DataFrame(to_devices_datas, columns=columns)
out_df.to_excel(devices_out_file, index=None)
columns = ['File_name', 'Ending_time', 'Wafer_id', 'lot_id', 'C_lot', 'Part_no', 'Records', 'Insert_num',
'Update_num', 'Machine_Name', 'Program', 'Step', 'Tempreature', 'FLOW', 'PARA_RECORDS',
'PARA_INSERT', 'PARA_UPDATE', 'VENDOR', 'RAW_WAFERID', 'PASS_DIE']
out_df = pd.DataFrame(to_fixed_datas, columns=columns)
out_df.to_excel(fixed_out_file, index=None)
columns = ['wafer_id', 'Locate_X', 'Locate_Y', 'Retest', 'Test_Name', 'Value', 'Program', 'Lot_id', 'Ending_time']
out_df = pd.DataFrame(to_other_datas, columns=columns)
out_df.to_excel(other_out_file, index=None)
columns = ['PROJECT_TYPE', 'PART_NO', 'PROCESS', 'PARAMETER', 'LIMIT_L', 'LIMIT_H', 'UNIT', 'TEST_NUM',
'TEST_PROGRAM', 'PARAMETER_ID', 'DISPLAY_UNIT', 'IS_CHART']
out_df = pd.DataFrame(to_parameter_datas, columns=columns)
out_df.to_excel(parameter_out_file, index=None)
最后
以上就是伶俐蜻蜓为你收集整理的txt转5个excel的全部内容,希望文章能够帮你解决txt转5个excel所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复