我是靠谱客的博主 酷酷超短裙,这篇文章主要介绍pytorch入门(十)—— 利用PyTorch实现量化交易,现在分享给大家,希望可以做个参考。

线性回归预测股价

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# -*- codiing: utf-8 -*- import numpy as np import torch import torch.nn as nn import matplotlib.pyplot as plt import torch.nn.functional as F import torch.autograd as autograd import pandas as pd import csv df = pd.read_csv(r"./data/point.xlsx", header=None, skiprows=1) df1 = df.iloc[:, 3:7].values df2 = df.iloc[:, -1].values xtrain_features = torch.FloatTensor(df1.astype('float').reshape(-1, 4)) xtrain_labels = torch.FloatTensor(df2) xtrain = torch.unsqueeze(xtrain_features, dim=1) ytrain = torch.unsqueeze(xtrain_labels, dim=1) x, y = autograd.Variable(xtrain), autograd.Variable(ytrain) class Net(nn.Module): def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() self.hidden = nn.Linear(n_feature, n_hidden) self.predict = nn.Linear(n_hidden, n_output) def forward(self, x): x = F.relu(self.hidden(x)) x = self.predict(x) return x model = Net(n_feature=4, n_hidden=10, n_output=1) loss_fn = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=1e-4) num_epochs = 100000 for epoch in range(num_epochs): inputs = x target = y out = model(inputs) loss = loss_fn(out, target) optimizer.zero_grad() loss.backward() optimizer.step() if (epoch + 1) % 2000 == 0: print('Epoch [{}/{}], loss: {:.6f}'.format(epoch + 1, num_epochs, loss.item()))

前馈神经网络预测股价

复制代码
1
2
在这里插入代码片

递归神经网络预测股价

复制代码
1
2
在这里插入代码片

这里是引用

最后

以上就是酷酷超短裙最近收集整理的关于pytorch入门(十)—— 利用PyTorch实现量化交易的全部内容,更多相关pytorch入门(十)——内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(71)

评论列表共有 0 条评论

立即
投稿
返回
顶部