概述
Fink 处理过程可以简化为三步 (source transformations sink)
source表示数据来源
transformations表示执行flink的处理逻辑 (核心)
sink表示数据分布式处理完成之后的数据走向
source 获取数据的方式自带的api如下
公共pom
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>1.11.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.12</artifactId>
<version>1.11.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.12</artifactId>
<version>1.11.1</version>
</dependency>
1.获取nc数据源
核心代码
/**
* 获取端口9999的数据 需要先启动nc (执行命令 nc -l -p 9999),否则显示连接拒绝
*
* @param env
* @return
*/
private static DataStream<String> getDataNC(StreamExecutionEnvironment env) {
DataStreamSource<String> data = env.socketTextStream("localhost", 9999, "n");
return data;
}
2.获取kafka数据源
特定pom
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_2.12</artifactId>
<version>1.11.1</version>
</dependency>
核心代码
/**
* 采集kafka的数据
*
* @param env
* @return
*/
private static DataStream<String> getDataKafka(StreamExecutionEnvironment env) {
Properties props = new Properties();
props.setProperty("bootstrap.servers", "ip:port");
props.setProperty("group.id", "flink-group");
FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>("test", new SimpleStringSchema(), props);
DataStreamSource<String> streamSource = env.addSource(consumer);
return streamSource;
}
source 自定义
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.source.RichSourceFunction;
public class MySource extends RichSourceFunction<String> {//此处泛型需要主动显示指定,与sink不同
/**
* source获取数据的方法
*
* @param ctx
* @throws Exception
*/
@Override
public void run(SourceContext<String> ctx) throws Exception {
// 循环可以不停的读取静态数据
while (true) {
ctx.collect("1,2,3,4,5");
System.out.println(this + "MySource获取数据");
Thread.sleep(3000);
}
}
/**
* open方法在source第一次启动时调用,一般用于source的初始化操作,例如初始化数据库连接
*/
@Override
public void open(Configuration parameters) throws Exception {
System.out.println("MySource初始化" + this);
super.open(parameters);
}
/**
* close方法在source退出时调用,一般用于source的资源回收操作,例如关闭数据库连接
*/
@Override
public void close() throws Exception {
System.out.println("MySource回收资源" + this);
super.close();
}
@Override
public void cancel() {
System.out.println("MySource取消" + this);
}
}
使用source代码
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(2);//设置flink分布式计算的迸发度
DataStream<String> data = env.addSource(new MySource());
sink 获取数据的方式自带的api如下
windowCounts.addSink(new PrintSinkFunction<>());//打印到控制台
sink的经过flink分布式计算完成之后可以自定义自定义结果处理,例如数据需要保存到mysql
自定义sink需要继承类 org.apache.flink.streaming.api.functions.sink.RichSinkFunction
代码如下
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
/**
* 自定义sink
*
* @param <T>
*/
public class MySink<T> extends RichSinkFunction<T> {//MySink可以继续使用泛型
/**
* open方法在sink第一次启动时调用,一般用于sink的初始化操作,例如初始化数据库连接
*/
@Override
public void open(Configuration parameters) throws Exception {
System.out.println("初始化" + this);
super.open(parameters);
}
/**
* invoke方法是sink数据处理逻辑的方法,source端传来的数据都在invoke方法中进行处理
* 其中invoke方法中第一个参数类型与RichSinkFunction<String>中的泛型对应。第二个参数
* 为一些上下文信息
*/
@Override
public void invoke(T value, Context context) throws Exception {
System.out.println(this + "输出:" + value);
}
/**
* close方法在sink结束时调用,一般用于资源的回收操作,例如关闭数据库连接
*/
@Override
public void close() throws Exception {
System.out.println("回收资源" + this);
super.close();
}
}
综合代码示例:
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.*;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.util.Collector;
import java.util.Properties;
/**
* Flink 单次统计
*/
public class SocketWindowWordCount {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);//设置flink分布式计算的迸发度
DataStream<String> data = env.addSource(new MySource());//添加source
//单词切割
SingleOutputStreamOperator<String> flatMap = data.flatMap(new FlatMapFunction<String, String>() {
@Override
public void flatMap(String value, Collector<String> out) throws Exception {
for (String word : value.split(",")) {
out.collect(word);//单词切割
}
}
});
//单词记录为1
SingleOutputStreamOperator<Tuple2<String, Long>> map = flatMap.map(new MapFunction<String, Tuple2<String, Long>>() {
@Override
public Tuple2<String, Long> map(String value) throws Exception {
return new Tuple2<>(value, 1L);
}
});
//分区
KeyedStream<Tuple2<String, Long>, String> word = map.keyBy(new KeySelector<Tuple2<String, Long>, String>() {
@Override
public String getKey(Tuple2<String, Long> tp2) throws Exception {
return tp2.f0;//根据Tuple2的f0 即 key分区
}
});
//时间窗口长度为5秒,窗口移动为1秒进行计算
WindowedStream<Tuple2<String, Long>, String, TimeWindow> windowedStream = word.timeWindow(Time.seconds(1), Time.seconds(1));
//统计计算
SingleOutputStreamOperator<Tuple2<String, Long>> windowCounts = windowedStream.reduce(new ReduceFunction<Tuple2<String, Long>>() {
@Override
public Tuple2<String, Long> reduce(Tuple2<String, Long> tp2_1, Tuple2<String, Long> tp2_2) throws Exception {
return new Tuple2<>(tp2_1.f0, tp2_1.f1 + tp2_2.f1);
}
});
windowCounts.addSink(new MySink<>());//打印到控制台
env.execute("Socket Window WordCount"); //开始执行
}
/**
* 获取端口9999的数据 需要先启动nc (执行命令 nc -l -p 9999),否则显示连接拒绝
*
* @param env
* @return
*/
private static DataStream<String> getDataNC(StreamExecutionEnvironment env) {
DataStreamSource<String> data = env.socketTextStream("localhost", 9999, "n");
return data;
}
/**
* 采集kafka的数据
*
* @param env
* @return
*/
private static DataStream<String> getDataKafka(StreamExecutionEnvironment env) {
Properties props = new Properties();
props.setProperty("bootstrap.servers", "39.100.228.221:9092");
props.setProperty("group.id", "flink-group");
SourceFunction<String> consumer = new FlinkKafkaConsumer<>("test", new SimpleStringSchema(), props);
DataStreamSource<String> streamSource = env.addSource(consumer);
return streamSource;
}
}
最后
以上就是奋斗皮皮虾为你收集整理的Flink 流式计算 source与sink的全部内容,希望文章能够帮你解决Flink 流式计算 source与sink所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复