我是靠谱客的博主 积极小馒头,最近开发中收集的这篇文章主要介绍【图像处理】彩色直方图均衡,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

sourcePic=imread('D:Imagespic_loc1870358810205041517.jpg');
[m,n,o]=size(sourcePic);
grayPic=rgb2gray(sourcePic);
figure,imshow(sourcePic);
figure,imshow(grayPic);
 
gp=zeros(1,256); %计算各灰度出现的概率
for i=1:256
	gp(i)=length(find(grayPic==(i-1)))/(m*n);
end
figure,bar(0:255,gp);
title('原图像直方图');
xlabel('灰度值');
ylabel('出现概率');
 
newGp=zeros(1,256); %计算新的各灰度出现的概率
S1=zeros(1,256);
S2=zeros(1,256);
tmp=0;
for i=1:256
	tmp=tmp+gp(i);
	S1(i)=tmp;
	S2(i)=round(S1(i)*256);
end
for i=1:256
	newGp(i)=sum(gp(find(S2==i)));
end
figure,bar(0:255,newGp);
title('均衡化后的直方图');
xlabel('灰度值');
ylabel('出现概率');
 
newGrayPic=grayPic; %填充各像素点新的灰度值
for i=1:256
	newGrayPic(find(grayPic==(i-1)))=S2(i);
end
figure,imshow(newGrayPic);

结果:




当然,有时候我们不禁想得到一幅图的灰度直方图均衡化结果,而是希望得到彩色图均衡化结果,那么就需要先将彩色图分为RGB分量,代码如下:

sourcePic=imread('D:Imagespic_loc1870358810205041517.jpg');
[m,n,o]=size(sourcePic);
figure,imshow(sourcePic,[]);
%grayPic=rgb2gray(sourcePic);
grayPic=sourcePic(:,:,1);
 
gp=zeros(1,256); %计算各灰度出现的概率
for i=1:256
	gp(i)=length(find(grayPic==(i-1)))/(m*n);
end
 
newGp=zeros(1,256); %计算新的各灰度出现的概率
S1=zeros(1,256);
S2=zeros(1,256);
tmp=0;
for i=1:256
	tmp=tmp+gp(i);
	S1(i)=tmp;
	S2(i)=round(S1(i)*256);
end
for i=1:256
	newGp(i)=sum(gp(find(S2==i)));
end
 
newGrayPic=grayPic; %填充各像素点新的灰度值
for i=1:256
	newGrayPic(find(grayPic==(i-1)))=S2(i);
end
nr=newGrayPic;
 
 
grayPic=sourcePic(:,:,2);
 
gp=zeros(1,256); %计算各灰度出现的概率
for i=1:256
	gp(i)=length(find(grayPic==(i-1)))/(m*n);
end
 
newGp=zeros(1,256); %计算新的各灰度出现的概率
S1=zeros(1,256);
S2=zeros(1,256);
tmp=0;
for i=1:256
	tmp=tmp+gp(i);
	S1(i)=tmp;
	S2(i)=round(S1(i)*256);
end
for i=1:256
	newGp(i)=sum(gp(find(S2==i)));
end
 
newGrayPic=grayPic; %填充各像素点新的灰度值
for i=1:256
	newGrayPic(find(grayPic==(i-1)))=S2(i);
end
ng=newGrayPic;
 
 
 
grayPic=sourcePic(:,:,3);
 
gp=zeros(1,256); %计算各灰度出现的概率
for i=1:256
	gp(i)=length(find(grayPic==(i-1)))/(m*n);
end
 
newGp=zeros(1,256); %计算新的各灰度出现的概率
S1=zeros(1,256);
S2=zeros(1,256);
tmp=0;
for i=1:256
	tmp=tmp+gp(i);
	S1(i)=tmp;
	S2(i)=round(S1(i)*256);
end
for i=1:256
	newGp(i)=sum(gp(find(S2==i)));
end
 
newGrayPic=grayPic; %填充各像素点新的灰度值
for i=1:256
	newGrayPic(find(grayPic==(i-1)))=S2(i);
end
nb=newGrayPic;
 
 
res=cat(3,nr,ng,nb);
figure,imshow(res,[]);

结果:


从原博客评论看,博主的方法是有问题的,不应该在RGB分开均衡,而应该在HSV上执行,否则存在严重的失真。

最后

以上就是积极小馒头为你收集整理的【图像处理】彩色直方图均衡的全部内容,希望文章能够帮你解决【图像处理】彩色直方图均衡所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(59)

评论列表共有 0 条评论

立即
投稿
返回
顶部