Java中的Future模式主要是用于等待子线程的返回结果,但是如果一直等待子线程返回值,就会使得主线程阻塞,但其实等待子线程返回值的这段过程中,主线程可以去做其他的事情,不一定要阻塞在原地,Java的Future模式会先返回一个虚拟的结果(假的),主线程可以先去做其他的事情,然后再去获取真实的结果。
之前Java实现多线程的那篇博客https://www.cnblogs.com/xiaobaituyun/p/10711717.html中有提及,Java可以通过实现Callable接口并重写call函数来实现多线程,然后将实现了callable的对象作为参数来构造FutureTask,FutureTask本身其实是一个runnable,再通过这个futureTask去构造一个Thread,最后通过futureTask的get来获取结果。这就是一个Java的Future模式。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35public class MyCallable implements Callable<Integer> { @Override /** * 重写call方法,即为线程的执行体 */ public Integer call() throws Exception { int i = 0; for (; i < 100; i++) { System.out.println(Thread.currentThread().getName() + ":" + i); } return i; } public static void main(String[] args) { //获取实习callable接口的类的实例 MyCallable callable = new MyCallable(); //使用FutureTask类来包装Callable对象, // 该FutureTask对象封装了该Callable对象的call()方法的返回值。 FutureTask<Integer> task = new FutureTask<>(callable); for (int i = 0; i < 100; i++) { System.out.println(Thread.currentThread().getName() + ":" + i); if (i == 20) { new Thread(task, "有返回值的线程").start(); try { System.out.println("子线程的返回值:" + task.get()); } catch (InterruptedException e) { e.printStackTrace(); } catch (ExecutionException e) { e.printStackTrace(); } } } } }
这里的FutureTask实现了RunnableFuture接口,而这个接口又同时继承了Runnable和Future接口。
1
2public class FutureTask<V> implements RunnableFuture<V>
1
2
3
4
5
6
7
8public interface RunnableFuture<V> extends Runnable, Future<V> { /** * Sets this Future to the result of its computation * unless it has been cancelled. */ void run(); }
而这里的Future接口主要有以下几个函数:
1
2
3
4
5
6
7
8
9
10
11
12
13public interface Future<V> {
//任务还没执行完成,取消任务,这里的mayInterruptIfRunning代表任务执行过程中能否被中断 boolean cancel(boolean mayInterruptIfRunning); //任务是否被取消 boolean isCancelled(); //任务是否执行完成 boolean isDone(); //获取任务结果 V get() throws InterruptedException, ExecutionException; //超时的获取任务结果 V get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException; }
其中的get函数获取任务结果的,而当任务没有执行完成或者未启动的时候,调用这个方法会导致线程阻塞,当任务已完成后,调用该方法立即返回值或是抛出异常。
而FutureTask是有任务状态之间的转换的,这里任务的state会在这7种状态中转换。
1
2
3
4
5
6
7
8
9private volatile int state;
//任务新建状态 private static final int NEW = 0; //任务执行中,结果还没设置
private static final int COMPLETING = 1; //任务正常执行完成
private static final int NORMAL = 2; //任务出异常
private static final int EXCEPTIONAL = 3; //任务取消状态
private static final int CANCELLED = 4; //任务中断中状态
private static final int INTERRUPTING = 5; //任务已经被中断状态
private static final int INTERRUPTED = 6;
几种常见的任务状态转换过程:
1)执行过程顺利完成:NEW -> COMPLETING -> NORMAL
2)执行过程出现异常:NEW -> COMPLETING -> EXCEPTIONAL
3)执行过程被取消:NEW -> CANCELLED
4)执行过程中,线程中断:NEW -> INTERRUPTING -> INTERRUPTED
FutureTask的构造函数:
可以从构造函数中看出FutureTask主要有两个参数,一个是callable,另外一个是state,当新建任务的时候,state为NEW,而不论传入的是runnable还是callable,最终都会构造成callable。
1
2
3
4
5
6
7
8
9
10
11
12public FutureTask(Callable<V> callable) { if (callable == null) throw new NullPointerException(); this.callable = callable; this.state = NEW; // ensure visibility of callable } public FutureTask(Runnable runnable, V result) { this.callable = Executors.callable(runnable, result); this.state = NEW; // ensure visibility of callable }
FutureTask其实也是一个runnable,当调用thread.start()方法时,最终会执行runnable的run()方法。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33public void run() { if (state != NEW || !UNSAFE.compareAndSwapObject(this, runnerOffset, null, Thread.currentThread())) return; try { Callable<V> c = callable; if (c != null && state == NEW) { V result; boolean ran; try { result = c.call(); ran = true; } catch (Throwable ex) { result = null; ran = false; setException(ex); } if (ran) set(result); } } finally { // runner must be non-null until state is settled to // prevent concurrent calls to run() runner = null; // state must be re-read after nulling runner to prevent // leaked interrupts int s = state; if (s >= INTERRUPTING) handlePossibleCancellationInterrupt(s); } }
这里run方法的逻辑主要是将FutureTask执行线程runner进行CAS设置,执行callable,并获取callable的结果,使用set(result)对结果进行保存,当出现异常时,也要对异常进行保存。
1
2
3
4
5
6
7
8protected void set(V v) { if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) { outcome = v; UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state finishCompletion(); } }
进入set方法,设置结果方法开始,状态变为COMPLETING,状态设置成功之后变为NORMAL,最后调用了finishCompletion(),将等待线程从等待队列中删除,并且唤醒等待队列中的线程,告诉线程结果已经执行完成。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25private void finishCompletion() { // assert state > COMPLETING; for (WaitNode q; (q = waiters) != null;) { if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) { for (;;) { Thread t = q.thread; if (t != null) { q.thread = null; LockSupport.unpark(t); } WaitNode next = q.next; if (next == null) break; q.next = null; // unlink to help gc q = next; } break; } } done(); callable = null; // to reduce footprint }
我们主要是通过get函数来获取我们想要的结果,而这里超时和非超时获取结果都是通过awaitDone函数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18public V get() throws InterruptedException, ExecutionException { int s = state; if (s <= COMPLETING) s = awaitDone(false, 0L); return report(s); } public V get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException { if (unit == null) throw new NullPointerException(); int s = state; if (s <= COMPLETING && (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING) throw new TimeoutException(); return report(s); }
awaitDone函数的逻辑则是如果任务已经执行完成,那么直接返回结果,如果任务还没到set(ressult)那一个阶段,将任务构造成等待任务队列节点放到等待任务队列中,并阻塞当前线程,这就是为啥set函数要进行唤醒,起到了一个等待/通知的作用。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37private int awaitDone(boolean timed, long nanos) throws InterruptedException { final long deadline = timed ? System.nanoTime() + nanos : 0L; WaitNode q = null; boolean queued = false; for (;;) { if (Thread.interrupted()) { removeWaiter(q); throw new InterruptedException(); } int s = state; if (s > COMPLETING) { if (q != null) q.thread = null; return s; } else if (s == COMPLETING) // cannot time out yet Thread.yield(); else if (q == null) q = new WaitNode(); else if (!queued) queued = UNSAFE.compareAndSwapObject(this, waitersOffset, q.next = waiters, q); else if (timed) { nanos = deadline - System.nanoTime(); if (nanos <= 0L) { removeWaiter(q); return state; } LockSupport.parkNanos(this, nanos); } else LockSupport.park(this); } }
这里的FutureTask.get()其实也是一个阻塞的方法,但是如果说线程已经执行完成,它是直接返回的,如果说线程还在执行,它需要等待线程执行完成,但是在FutureTask.get()之前可以做别的事情(写别的代码逻辑),而不是一直等待线程执行完成。
转载于:https://www.cnblogs.com/xiaobaituyun/p/10820246.html
最后
以上就是酷炫冬日最近收集整理的关于Java的Future模式的全部内容,更多相关Java内容请搜索靠谱客的其他文章。
发表评论 取消回复