我是靠谱客的博主 乐观饼干,最近开发中收集的这篇文章主要介绍hdu5737(2016多校联赛第2场D),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

题意:给2组数据a和b数组,每次有2种操作:(+,l,r,x)把a数组第l个到第r个元素全置为x,(?,l,r)查询[l,r]之间哪些位置满足a[i]>=b[i](i>=l && i<=r)并把这些位置的数量统计

一直想很久,没想到什么有效的方案,直到看到题解才明白过来,原来线段树套平衡树还有这种情况:里面其实不是平衡树,只是有序表。

然后这题就转换为区间查找数对应排名

由于此题不用对2个数组都修改,其中1个b树可作为固定的线段树套有序表以节省时间,另外1个表a树则单纯使用线段树的方法先修改,再更新对应b树结点的排名

这里查找排名如果全部logn查找会因为常数太大直接卡,注意每个结点都含有序表并且上下有包含关系

那咱们可以在b树自底向上更新父结点排名对应左右子树里的排名,用归并排序的方法,占用空间才o(nlogn),时间也是o(nlogn)

顺带把会改变的a树1个个结点查询b树查出排名,修改时先查出根结点对应位置,再根据位置子树表一边向下更新一边转移到子树对应位置

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<queue>
#include<stack>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<stdlib.h>
#include<cmath>
#include<string>
#include<algorithm>
#include<iostream>
using namespace std;
typedef __int64 ll;
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
int cnt;
const int N=100010,M=262150,E=1768950;
int n,m,i,a[N],b[N],x,l,r;
int st[M],en[M],v[M],tag[M],pl[E],pr[E],pool[E],cur;
ll ans,sum;
void build(int x,int l,int r)
{
tag[x]=-1;
if(l==r)
{
st[x]=cur+1;
pool[++cur]=b[l];
en[x]=cur;
v[x]=(a[l]>=b[l]);
return;
}
int mid=((l+r)>>1);
build(x<<1,l,mid);
build((x<<1)|1,mid+1,r);
v[x]=v[x<<1]+v[(x<<1)|1];
int al=st[x<<1],ar=en[x<<1],bl=st[(x<<1)|1],br=en[(x<<1)|1];
st[x]=cur+1;
while(al<=ar&&bl<=br)pool[++cur]=pool[al]<pool[bl]?pool[al++]:pool[bl++];
while(al<=ar)pool[++cur]=pool[al++];
while(bl<=br)pool[++cur]=pool[bl++];
en[x]=cur;
al=st[x<<1],bl=st[x<<1|1];
for(int i=st[x];i<=cur;i++)
{
while(al<=ar&&pool[al]<=pool[i])al++;
while(bl<=br&&pool[bl]<=pool[i])bl++;
pl[i]=al-1,pr[i]=bl-1;
if(pl[i]<st[x<<1])pl[i]=0;
if(pr[i]<st[(x<<1)|1])pr[i]=0;
}
}
inline void rankpt(int x,int p)
{
v[x]=(p?p-st[x]+1:0);
tag[x]=p;
}
inline void pushdown(int x)
{
if(tag[x]<0)return;
int p=tag[x];
rankpt(x<<1,pl[p]);
rankpt((x<<1)|1,pr[p]);
tag[x]=-1;
}
void update(int x,int a,int b,int p)
{
if(l<=a && b<=r){rankpt(x,p);return;}
pushdown(x);
int mid=(a+b)>>1;
if(l<=mid)update(x<<1,a,mid,pl[p]);
if(r>mid)update((x<<1)|1,mid+1,b,pr[p]);
v[x]=v[x<<1]+v[(x<<1)|1];
}
void query(int x,int a,int b)
{
if(l<=a && b<=r)
{
ans+=v[x];
return;
}
pushdown(x);
int mid=((a+b)>>1);
if(l<=mid)query(x<<1,a,mid);
if(r>mid)query((x<<1)|1,mid+1,b);
v[x]=v[x<<1]+v[(x<<1)|1];
}
inline int lower(int x){
//lower_bound(pool+st[1],pool+ed[1]+1,x);
int l=st[1],r=en[1],mid,t=0;
while(l<=r)
if(pool[mid=(l+r)>>1]<=x)l=(t=mid)+1;
else r=mid-1;
return t;
}
int seeda, seedb, C = ~(1<<31), MM = (1<<16)-1;
int rnd(int last) {
seeda = (36969 + (last >> 3)) * (seeda & MM) + (seeda >> 16);
seedb = (18000 + (last >> 3)) * (seedb & MM) + (seedb >> 16);
return (C & ((seeda << 16) + seedb)) % 1000000000;
}
int main()
{
int t,ku;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d%d",&n,&m,&seeda,&seedb);
for(i=1;i<=n;i++)scanf("%d",a+i);
for(i=1;i<=n;i++)scanf("%d",b+i);
ans=sum=cur=0;
build(1,1,n);
for(i=1;i<=m;i++)
{
l=rnd(ans)%n+1,r=rnd(ans)%n+1,ku=rnd(ans)+1;
int kkk=lower(ku);
if(l>r)l^=r^=l^=r;
if((l+r+ku)&1)update(1,1,n,lower(ku));
else
{
ans=0;
query(1,1,n);
sum=(sum+(ll)i*ans)%1000000007;
}
}
printf("%I64dn",sum);
}
return 0;
}
View Code

 

转载于:https://www.cnblogs.com/dgutfly/p/6014560.html

最后

以上就是乐观饼干为你收集整理的hdu5737(2016多校联赛第2场D)的全部内容,希望文章能够帮你解决hdu5737(2016多校联赛第2场D)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(46)

评论列表共有 0 条评论

立即
投稿
返回
顶部