概述
Problem Description
Give you a sequence of
N(N≤100,000)
integers :
a1,...,an(0<ai≤1000,000,000)
. There are
Q(Q≤100,000)
queries. For each query
l,r
you have to calculate
gcd(al,,al+1,...,ar)
and count the number of pairs
(l′,r′)(1≤l<r≤N)
such that
gcd(al′,al′+1,...,ar′)
equal
gcd(al,al+1,...,ar)
.
Input
The first line of input contains a number
T
, which stands for the number of test cases you need to solve.
The first line of each case contains a number N , denoting the number of integers.
The second line contains N integers, a1,...,an(0<ai≤1000,000,000) .
The third line contains a number Q , denoting the number of queries.
For the next Q lines, i-th line contains two number , stand for the li,ri , stand for the i-th queries.
The first line of each case contains a number N , denoting the number of integers.
The second line contains N integers, a1,...,an(0<ai≤1000,000,000) .
The third line contains a number Q , denoting the number of queries.
For the next Q lines, i-th line contains two number , stand for the li,ri , stand for the i-th queries.
Output
For each case, you need to output “Case #:t” at the beginning.(with quotes,
t
means the number of the test case, begin from 1).
For each query, you need to output the two numbers in a line. The first number stands for gcd(al,al+1,...,ar) and the second number stands for the number of pairs (l′,r′) such that gcd(al′,al′+1,...,ar′) equal gcd(al,al+1,...,ar) .
For each query, you need to output the two numbers in a line. The first number stands for gcd(al,al+1,...,ar) and the second number stands for the number of pairs (l′,r′) such that gcd(al′,al′+1,...,ar′) equal gcd(al,al+1,...,ar) .
Sample Input
1 5 1 2 4 6 7 4 1 5 2 4 3 4 4 4
Sample Output
Case #1: 1 8 2 4 2 46 1
题意:给你n个数,m个询问,每一个询问都是一个区间,让你先计算出这段区间所有数的gcd,然后问1~n所有连续区间中gcd的值等于询问区间gcd的区间个数。
思路:考虑到如果固定区间左端点L,那么右端点从L+1变化到n的过程中gcd最多变化log(区间内最大的数的大小)次(因为每次变化至少除以2),那么我们就可以枚举左端点,然后每次二分值连续的区间,然后都存到map里就行了。
#include<iostream> #include<stdio.h> #include<stdlib.h> #include<string.h> #include<math.h> #include<vector> #include<queue> #include<map> #include<set> #include<string> #include<bitset> #include<algorithm> using namespace std; #define lson th<<1 #define rson th<<1|1 typedef long long ll; typedef long double ldb; #define inf 99999999 #define pi acos(-1.0) #define Key_value ch[ch[root][1]][0] map<int,ll>mp; map<int,ll>::iterator it; int q[100100][2]; int gcd(int a,int b){ return b?gcd(b,a%b):a; } int gcd1[100100][30]; int a[100006]; void init_rmq(int n) { int i,j; for(i=1;i<=n;i++){ gcd1[i][0]=a[i]; } for(j=1;j<=20;j++){ for(i=1;i<=n;i++){ if(i+(1<<j)-1<=n){ gcd1[i][j]=gcd(gcd1[i][j-1],gcd1[i+(1<<(j-1))][j-1]); gcd1[i][j]=gcd(gcd1[i][j-1],gcd1[i+(1<<(j-1))][j-1]); } } } } int getgcd(int l,int r) { int k,i; if(l>r)swap(l,r); k=(log((r-l+1)*1.0)/log(2.0)); return gcd(gcd1[l][k],gcd1[r-(1<<k)+1][k]); } int main() { int n,m,i,j,T,cas=0; scanf("%d",&T); while(T--) { scanf("%d",&n); for(i=1;i<=n;i++){ scanf("%d",&a[i]); } mp.clear(); init_rmq(n); int l,r,mid; for(i=1;i<=n;i++){ //printf("----->%dn",i); int val=a[i]; int pos=i; while(pos<=n){ val=getgcd(i,pos); l=pos,r=n; while(l<=r){ mid=(l+r)/2; if(getgcd(i,mid)==val)l=mid+1; else r=mid-1; } mp[val]+=(r-pos+1); pos=l; } } scanf("%d",&m); for(i=1;i<=m;i++){ scanf("%d%d",&q[i][0],&q[i][1]); } printf("Case #%d:n",++cas); for(i=1;i<=m;i++){ printf("%d %lldn",getgcd(q[i][0],q[i][1]),mp[getgcd(q[i][0] ,q[i][1] ) ] ); } } return 0; }
最后
以上就是潇洒便当为你收集整理的hdu5726 GCD(gcd +二分+rmq)的全部内容,希望文章能够帮你解决hdu5726 GCD(gcd +二分+rmq)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复