我是靠谱客的博主 乐观咖啡豆,这篇文章主要介绍Karhunen–Loeve Decomposition (K-L展开),现在分享给大家,希望可以做个参考。

WIKI概述

In the theory of stochastic processes, the Karhunen–Loève theorem (named after Kari Karhunen and Michel Loève), also known as the Kosambi–Karhunen–Loève theorem[1][2] is a representation of a stochastic process as an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. The transformation is also known as Hotelling transform and eigenvector transform, and is closely related to the principal component analysis (PCA) technique widely used in image processing and in data analysis in many fields.[3]

---------------- 具体内容可参考如下内容 -------------------

截图自 Li, Jie, and Jianbing Chen. Stochastic dynamics of structures. John Wiley & Sons, 2009.

 

最后

以上就是乐观咖啡豆最近收集整理的关于Karhunen–Loeve Decomposition (K-L展开)的全部内容,更多相关Karhunen–Loeve内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(58)

评论列表共有 0 条评论

立即
投稿
返回
顶部