概述
#coding:gbk
import math
import copy
import numpy as np
import matplotlib.pyplot as plt
isdebug = False
# 指定k个高斯分布参数,这里指定k=2。注意2个高斯分布具有相同均方差Sigma,分别为Mu1,Mu2。
def ini_data(Sigma,Mu1,Mu2,k,N):
global X
global Mu
global Expectations
X = np.zeros((1,N))
Mu = np.random.random(2)
Expectations = np.zeros((N,k))
for i in xrange(0,N):
if np.random.random(1) > 0.5:
X[0,i] = np.random.normal()*Sigma + Mu1
else:
X[0,i] = np.random.normal()*Sigma + Mu2
if isdebug:
print "***********"
print u"初始观测数据X:"
print X
# EM算法:步骤1,计算E[zij]
def e_step(Sigma,k,N):
global Expectations
global Mu
global X
for i in xrange(0,N):
Denom = 0
for j in xrange(0,k):
Denom += math.exp((-1/(2*(float(Sigma**2))))*(float(X[0,i]-Mu[j]))**2)
for j in xrange(0,k):
Numer = math.exp((-1/(2*(float(Sigma**2))))*(float(X[0,i]-Mu[j]))**2)
Expectations[i,j] = Numer / Denom
if isdebug:
print "***********"
print u"隐藏变量E(Z):"
print Expectations
# EM算法:步骤2,求最大化E[zij]的参数Mu
def m_step(k,N):
global Expectations
global X
for j in xrange(0,k):
Numer = 0
Denom = 0
for i in xrange(0,N):
Numer += Expectations[i,j]*X[0,i]
Denom +=Expectations[i,j]
Mu[j] = Numer / Denom
# 算法迭代iter_num次,或达到精度Epsilon停止迭代
def run(Sigma,Mu1,Mu2,k,N,iter_num,Epsilon):
ini_data(Sigma,Mu1,Mu2,k,N)
print u"初始<u1,u2>:", Mu
for i in range(iter_num):
Old_Mu = copy.deepcopy(Mu)
e_step(Sigma,k,N)
m_step(k,N)
print i,Mu
if sum(abs(Mu-Old_Mu)) < Epsilon:
break
if __name__ == '__main__':
run(6,40,20,2,1000,1000,0.0001)
plt.hist(X[0,:],50)
plt.show()
EM算法一般表述:
当有部分数据缺失或者无法观察到时,EM算法提供了一个高效的迭代程序用来计算这些数据的最大似然估计。在每一步迭代分为两个步骤:期望(Expectation)步骤和最大化(Maximization)步骤,因此称为EM算法。
假设全部数据Z是由可观测到的样本X={X1, X2,……, Xn}和不可观测到的样本Z={Z1, Z2,……, Zn}组成的,则Y = X∪Z。EM算法通过搜寻使全部数据的似然函数Log(L(Z; h))的期望值最大来寻找极大似然估计,注意此处的h不是一个变量,而是多个变量组成的参数集合。此期望值是在Z所遵循的概率分布上计算,此分布由未知参数h确定。然而Z所遵循的分布是未知的。EM算法使用其当前的假设h`代替实际参数h,以估计Z的分布。
Q( h`| h) = E [ ln P(Y|h`) | h, X ]
EM算法重复以下两个步骤直至收敛。
步骤1:估计(E)步骤:使用当前假设h和观察到的数据X来估计Y上的概率分布以计算Q( h` | h )。
Q( h` | h ) ←E[ ln P(Y|h`) | h, X ]
步骤2:最大化(M)步骤:将假设h替换为使Q函数最大化的假设h`:
h ←argmaxQ( h` | h )
高斯混合模型参数估计问题:
简单起见,本问题研究两个高斯混合模型参数估计k=2。
问题描述:假设X是由k个高斯分布均匀混合而成的,这k个高斯分布的均值不同,但是具有相同的方差。设样本值为x1, x2, ……, xn,xi可以表示为一个K+1元组< xi, zi1, zi2, …, zik>,其中只有一个取1,其余的为0。此处的zi1到zik为隐藏变量,是未知的。且任意zij被选择的概率相等,即
P(zij = 1)=1/k (j=1,2,3.....k)
最后
以上就是时尚煎蛋为你收集整理的EM算法求高斯混合模型参数估计-python的全部内容,希望文章能够帮你解决EM算法求高斯混合模型参数估计-python所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复