概述
Contents
- A R M A ( 1 , 1 ) {rm ARMA}(1,,1) ARMA(1,1) 模型
- 模型设定与平稳解
- 自协方差函数
- 自相关系数和偏相关系数
A R M A ( 1 , 1 ) {rm ARMA}(1,,1) ARMA(1,1) 模型
模型设定与平稳解
X t = a X t − 1 + ε t + b ε t − 1 X_t=aX_{t-1}+varepsilon_t+bvarepsilon_{t-1} Xt=aXt−1+εt+bεt−1
特征多项式 A ( z ) = 1 − a z A(z)=1-az A(z)=1−az , B ( z ) = 1 + b z B(z)=1+bz B(z)=1+bz 。
由泰勒级数计算 Wold 系数:
Φ
(
z
)
=
B
(
z
)
A
(
z
)
=
1
+
b
z
1
−
a
z
=
(
1
+
b
z
)
∑
j
=
0
∞
a
j
z
j
=
1
+
(
a
+
b
)
∑
j
=
1
∞
a
j
−
1
z
j
Phi(z)=frac{B(z)}{A(z)}=frac{1+bz}{1-az}=(1+bz)sum_{j=0}^infty a^jz^j=1+(a+b)sum_{j=1}^infty a^{j-1}z^j
Φ(z)=A(z)B(z)=1−az1+bz=(1+bz)j=0∑∞ajzj=1+(a+b)j=1∑∞aj−1zj
由 Wold 系数递推公式计算 Wold 系数:
ψ
0
=
1
,
ψ
1
=
b
+
a
ψ
1
−
1
=
b
+
a
ψ
0
=
a
+
b
,
psi_0=1 , psi_1=b+apsi_{1-1}=b+apsi_0=a+b ,
ψ0=1 , ψ1=b+aψ1−1=b+aψ0=a+b ,
ψ j = a ψ j − 1 = ⋯ = a j − 1 ψ 1 = a j − 1 ( a + b ) , j = 2 , 3 , 4 , ⋯ psi_j=apsi_{j-1}=cdots=a^{j-1}psi_1=a^{j-1}(a+b) , j=2,3,4,cdots ψj=aψj−1=⋯=aj−1ψ1=aj−1(a+b) , j=2,3,4,⋯
A
R
M
A
(
1
,
1
)
{rm ARMA}(1,,1)
ARMA(1,1) 模型的平稳解:
X
t
=
ε
t
+
(
a
+
b
)
∑
j
=
0
∞
a
j
−
1
ε
t
−
j
.
X_t=varepsilon_t+(a+b)sum_{j=0}^infty a^{j-1}varepsilon_{t-j} .
Xt=εt+(a+b)j=0∑∞aj−1εt−j .
自协方差函数
由 Wold 系数计算自协方差函数:
γ
0
=
σ
2
∑
j
=
0
∞
ψ
j
2
=
σ
2
[
1
+
∑
j
=
1
∞
(
a
+
b
)
2
a
2
(
j
−
1
)
]
=
σ
2
[
1
+
(
a
+
b
)
2
1
−
a
2
]
=
σ
2
1
+
2
a
b
+
b
2
1
−
a
2
.
begin{aligned} gamma_0=sigma^2sum_{j=0}^inftypsi_j^2 &=sigma^2left[1+sum_{j=1}^infty(a+b) ^2a^{2(j-1)}right] \ &=sigma^2left[1+frac{(a+b)^2}{1-a^2}right] \ &=sigma^2frac{1+2ab+b^2}{1-a^2} . end{aligned}
γ0=σ2j=0∑∞ψj2=σ2[1+j=1∑∞(a+b)2a2(j−1)]=σ2[1+1−a2(a+b)2]=σ21−a21+2ab+b2 .
γ 1 = σ 2 ∑ j = 0 ∞ ψ j ψ j + 1 = σ 2 [ ψ 1 + ∑ j = 1 ∞ a ( a + b ) 2 a 2 ( j − 1 ) ] = σ 2 [ a + b + a ( a + b ) 2 1 − a 2 ] = σ 2 ( a + b ) ( 1 + a b ) 1 − a 2 . begin{aligned} gamma_1=sigma^2sum_{j=0}^inftypsi_jpsi_{j+1} &=sigma^2left[psi_1+sum_{j=1}^infty a(a+b) ^2a^{2(j-1)}right] \ &=sigma^2left[a+b+afrac{(a+b)^2}{1-a^2}right] \ &=sigma^2frac{(a+b)(1+ab)}{1-a^2} . end{aligned} γ1=σ2j=0∑∞ψjψj+1=σ2[ψ1+j=1∑∞a(a+b)2a2(j−1)]=σ2[a+b+a1−a2(a+b)2]=σ21−a2(a+b)(1+ab) .
γ k = σ 2 ∑ j = 0 ∞ ψ j ψ j + k = σ 2 a ∑ j = 0 ∞ ψ j ψ j + k − 1 = a γ k − 1 = a 2 γ k − 2 = ⋯ = a k − 1 γ 1 = a k − 1 σ 2 ( a + b ) ( 1 + a b ) 1 − a 2 . begin{aligned} gamma_k&=sigma^2sum_{j=0}^inftypsi_jpsi_{j+k} =sigma^2asum_{j=0}^inftypsi_jpsi_{j+k-1} \ &=agamma_{k-1}=a^2gamma_{k-2}=cdots=a^{k-1}gamma_1=a^{k-1}sigma^2frac{(a+b)(1+ab)}{1-a^2} . end{aligned} γk=σ2j=0∑∞ψjψj+k=σ2aj=0∑∞ψjψj+k−1=aγk−1=a2γk−2=⋯=ak−1γ1=ak−1σ21−a2(a+b)(1+ab).
用 Yule-Walker 方程计算自协方差函数:
对模型方程两边同乘
X
t
−
k
,
k
=
0
,
1
,
2
,
⋯
X_{t-k} , ,k=0,1,2,cdots
Xt−k ,k=0,1,2,⋯ 并取期望,由于
A
R
M
A
(
1
,
1
)
{rm ARMA}(1,,1)
ARMA(1,1) 序列的合理性:
E
(
ε
t
X
t
−
k
)
=
0
,
k
≥
1
{rm E}(varepsilon_tX_{t-k})=0,,kgeq1
E(εtXt−k)=0,k≥1 ,有
γ
0
=
a
γ
1
+
E
(
X
t
ε
t
)
+
b
E
(
X
t
ε
t
−
1
)
,
gamma_0=agamma_1+{rm E}(X_tvarepsilon_t)+b{rm E}(X_tvarepsilon_{t-1}) ,
γ0=aγ1+E(Xtεt)+bE(Xtεt−1) ,
γ 1 = a γ 0 + 0 + b E ( X t − 1 ε t − 1 ) gamma_1=agamma_0+0+b{rm E}(X_{t-1}varepsilon_{t-1}) γ1=aγ0+0+bE(Xt−1εt−1)
γ k = a γ k − 1 + 0 + b ⋅ 0 , k = 2 , 3 , ⋯ gamma_k=agamma_{k-1}+0+bcdot0 , k=2,3,cdots γk=aγk−1+0+b⋅0 , k=2,3,⋯
由 Wold 系数表示知
E
(
X
t
ε
t
−
j
)
=
σ
2
ψ
j
{rm E}(X_tvarepsilon_{t-j})=sigma^2psi_j
E(Xtεt−j)=σ2ψj ,所以
γ
0
=
a
γ
1
+
σ
2
[
1
+
b
(
a
+
b
)
]
,
gamma_0=agamma_1+sigma^2[1+b(a+b)] ,
γ0=aγ1+σ2[1+b(a+b)] ,
γ 1 = a γ 0 + σ 2 b , gamma_1=agamma_0+sigma^2b , γ1=aγ0+σ2b ,
γ k = a γ k − 1 = a k − 1 γ 1 , k = 2 , 3 , ⋯ gamma_k=agamma_{k-1}=a^{k-1}gamma_1 , k=2,3,cdots γk=aγk−1=ak−1γ1 , k=2,3,⋯
求解得自协方差函数为
γ
k
=
{
σ
2
1
+
2
a
b
+
b
2
1
−
a
2
,
k
=
0
;
σ
2
(
a
+
b
)
(
1
+
a
b
)
1
−
a
2
,
k
=
1
;
a
k
−
1
σ
2
(
a
+
b
)
(
1
+
a
b
)
1
−
a
2
,
k
=
2
,
3
,
4
,
⋯
gamma_k=left{begin{array}{lll} sigma^2dfrac{1+2ab+b^2}{1-a^2} , &k=0 ;\ \ sigma^2dfrac{(a+b)(1+ab)}{1-a^2} , &k=1 ;\ \ a^{k-1}sigma^2dfrac{(a+b)(1+ab)}{1-a^2} , &k=2,3,4,cdots end{array} right.
γk=⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧σ21−a21+2ab+b2 ,σ21−a2(a+b)(1+ab) ,ak−1σ21−a2(a+b)(1+ab) ,k=0 ;k=1 ;k=2,3,4,⋯
自相关系数和偏相关系数
自相关函数为
ρ
k
=
{
1
,
k
=
0
;
(
a
+
b
)
(
1
+
a
b
)
1
+
2
a
b
+
b
2
,
k
=
1
;
a
ρ
k
−
1
=
a
k
−
1
ρ
1
,
k
=
2
,
3
,
4
,
⋯
rho_k=left{begin{array}{lll} 1 , &k=0 ;\ \ dfrac{(a+b)(1+ab)}{1+2ab+b^2} , &k=1 ;\ \ arho_{k-1}=a^{k-1}rho_1 , &k=2,3,4,cdots end{array} right.
ρk=⎩⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧1 ,1+2ab+b2(a+b)(1+ab) ,aρk−1=ak−1ρ1 ,k=0 ;k=1 ;k=2,3,4,⋯
用 Yule-Walker 方程计算偏相关系数的前几项
a
1
,
1
=
ρ
1
=
(
a
+
b
)
(
1
+
a
b
)
1
+
2
a
b
+
b
2
.
a_{1,1}=rho_1=dfrac{(a+b)(1+ab)}{1+2ab+b^2}.
a1,1=ρ1=1+2ab+b2(a+b)(1+ab).
写出
a
2
,
2
a_{2,2}
a2,2 满足的 Yule-Walker 方程
[
γ
0
γ
1
γ
1
γ
0
]
[
a
2
,
1
a
2
,
2
]
=
[
γ
1
γ
2
]
left[begin{array}{cc} gamma_0 & gamma_1 \ gamma_1 & gamma_0 \ end{array} right] left[begin{array}{cc} a_{2,1} \ a_{2,2} \ end{array} right]=left[begin{array}{cc} gamma_1 \ gamma_2 \ end{array} right]
[γ0γ1γ1γ0][a2,1a2,2]=[γ1γ2]
[ 1 ρ 1 ρ 1 1 ] [ a 2 , 1 a 2 , 2 ] = [ ρ 1 ρ 2 ] = [ ρ 1 a ρ 1 ] left[begin{array}{cc} 1 & rho_1 \ rho_1 & 1 \ end{array} right] left[begin{array}{cc} a_{2,1} \ a_{2,2} \ end{array} right]=left[begin{array}{cc} rho_1 \ rho_2 \ end{array} right]=left[begin{array}{cc} rho_1 \ arho_1 \ end{array} right] [1ρ1ρ11][a2,1a2,2]=[ρ1ρ2]=[ρ1aρ1]
由Cramer 法则
a
2
,
2
=
∣
1
ρ
1
ρ
1
a
ρ
1
∣
∣
1
ρ
1
ρ
1
1
∣
=
ρ
1
(
a
−
ρ
1
)
1
−
ρ
1
2
a_{2,2}=frac{left|begin{array}{cc} 1 & rho_1 \ rho_1 & arho_1 \ end{array} right|}{left|begin{array}{cc} 1 & rho_1 \ rho_1 & 1 \ end{array} right|}=frac{rho_1(a-rho_1)}{1-rho_1^2}
a2,2=∣∣∣∣1ρ1ρ11∣∣∣∣∣∣∣∣1ρ1ρ1aρ1∣∣∣∣=1−ρ12ρ1(a−ρ1)
同理可得
a
3
,
3
=
∣
1
ρ
1
ρ
1
ρ
1
1
ρ
2
ρ
2
ρ
1
ρ
3
∣
∣
1
ρ
1
ρ
2
ρ
1
1
ρ
1
ρ
2
ρ
1
1
∣
=
ρ
1
(
a
−
ρ
1
)
2
1
+
2
a
ρ
1
3
−
ρ
1
2
(
2
+
a
2
)
a_{3,3}=frac{left|begin{array}{ccc} 1 & rho_1 & rho_1\ rho_1 & 1 & rho_2\ rho_2 & rho_1 & rho_3 end{array} right|}{left|begin{array}{ccc} 1 & rho_1 & rho_2\ rho_1 & 1 & rho_1\ rho_2 & rho_1 & 1 end{array} right|}=frac{rho_1(a-rho_1)^2}{1+2arho_1^3-rho_1^2(2+a^2)}
a3,3=∣∣∣∣∣∣1ρ1ρ2ρ11ρ1ρ2ρ11∣∣∣∣∣∣∣∣∣∣∣∣1ρ1ρ2ρ11ρ1ρ1ρ2ρ3∣∣∣∣∣∣=1+2aρ13−ρ12(2+a2)ρ1(a−ρ1)2
也可以用 Levinson 递推公式计算偏相关系数的前几项
a
2
,
2
=
γ
2
−
γ
1
a
1
,
1
γ
0
−
γ
1
a
1
,
1
=
ρ
2
−
ρ
1
2
1
−
ρ
1
2
=
ρ
1
(
a
−
ρ
1
)
1
−
ρ
1
2
,
a_{2,2}=dfrac{gamma_2-gamma_1a_{1,1}}{gamma_0-gamma_1a_{1,1}}=frac{rho_2-rho_1^2}{1-rho_1^2}=frac{rho_1(a-rho_1)}{1-rho_1^2} ,
a2,2=γ0−γ1a1,1γ2−γ1a1,1=1−ρ12ρ2−ρ12=1−ρ12ρ1(a−ρ1) ,
a 2 , 1 = a 1 , 1 − a 2 , 2 a 1 , 1 = ρ 1 ( 1 − ρ 1 ( a − ρ 1 ) 1 − ρ 1 2 ) = ρ 1 ( 1 − a ρ 1 ) 1 − ρ 1 2 a_{2,1}=a_{1,1}-a_{2,2}a_{1,1}=rho_1left(1-frac{rho_1(a-rho_1)}{1-rho_1^2}right)=frac{rho_1(1-arho_1)}{1-rho_1^2} a2,1=a1,1−a2,2a1,1=ρ1(1−1−ρ12ρ1(a−ρ1))=1−ρ12ρ1(1−aρ1)
a 3 , 3 = γ 3 − γ 2 a 2 , 1 − γ 1 a 2 , 2 γ 0 − γ 1 a 2 , 1 − γ 2 a 2 , 2 = ρ 3 − ρ 2 a 2 , 1 − ρ 1 a 2 , 2 1 − ρ 1 a 2 , 1 − ρ 2 a 2 , 2 = a 2 ρ 1 − a ρ 1 2 ( 1 − a ρ 1 ) 1 − ρ 1 2 − ρ 1 2 ( a − ρ 1 ) 1 − ρ 1 2 1 − ρ 1 2 ( 1 − a ρ 1 ) 1 − ρ 1 2 − a ρ 1 2 ( a − ρ 1 ) 1 − ρ 1 2 = ρ 1 ( a − ρ 1 ) 2 1 + 2 a ρ 1 3 − ρ 1 2 ( 2 + a 2 ) begin{aligned} a_{3,3}&=frac{gamma_3-gamma_2a_{2,1}-gamma_1a_{2,2}}{gamma_0-gamma_1a_{2,1}-gamma_2a_{2,2}}\ \ &=frac{rho_3-rho_2a_{2,1}-rho_1a_{2,2}}{1-rho_1a_{2,1}-rho_2a_{2,2}} \ \ &=frac{a^2rho_1-dfrac{arho_1^2(1-arho_1)}{1-rho_1^2}-dfrac{rho_1^2(a-rho_1)}{1-rho_1^2}}{1-dfrac{rho_1^2(1-arho_1)}{1-rho_1^2}-dfrac{arho_1^2(a-rho_1)}{1-rho_1^2}} \ \ &=frac{rho_1(a-rho_1)^2}{1+2arho_1^3-rho_1^2(2+a^2)} end{aligned} a3,3=γ0−γ1a2,1−γ2a2,2γ3−γ2a2,1−γ1a2,2=1−ρ1a2,1−ρ2a2,2ρ3−ρ2a2,1−ρ1a2,2=1−1−ρ12ρ12(1−aρ1)−1−ρ12aρ12(a−ρ1)a2ρ1−1−ρ12aρ12(1−aρ1)−1−ρ12ρ12(a−ρ1)=1+2aρ13−ρ12(2+a2)ρ1(a−ρ1)2
最后
以上就是醉熏蜡烛为你收集整理的【时间序列分析】12. ARMA(1,1)模型 A R M A ( 1 , 的全部内容,希望文章能够帮你解决【时间序列分析】12. ARMA(1,1)模型 A R M A ( 1 , 所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复