我是靠谱客的博主 醉熏蜡烛,最近开发中收集的这篇文章主要介绍【时间序列分析】12. ARMA(1,1)模型 A R M A ( 1 , ,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

Contents

  • A R M A ( 1 ,   1 ) {rm ARMA}(1,,1) ARMA(1,1) 模型
    • 模型设定与平稳解
    • 自协方差函数
    • 自相关系数和偏相关系数

A R M A ( 1 ,   1 ) {rm ARMA}(1,,1) ARMA(1,1) 模型

模型设定与平稳解

X t = a X t − 1 + ε t + b ε t − 1 X_t=aX_{t-1}+varepsilon_t+bvarepsilon_{t-1} Xt=aXt1+εt+bεt1

特征多项式 A ( z ) = 1 − a z A(z)=1-az A(z)=1az B ( z ) = 1 + b z B(z)=1+bz B(z)=1+bz

由泰勒级数计算 Wold 系数:
Φ ( z ) = B ( z ) A ( z ) = 1 + b z 1 − a z = ( 1 + b z ) ∑ j = 0 ∞ a j z j = 1 + ( a + b ) ∑ j = 1 ∞ a j − 1 z j Phi(z)=frac{B(z)}{A(z)}=frac{1+bz}{1-az}=(1+bz)sum_{j=0}^infty a^jz^j=1+(a+b)sum_{j=1}^infty a^{j-1}z^j Φ(z)=A(z)B(z)=1az1+bz=(1+bz)j=0ajzj=1+(a+b)j=1aj1zj
由 Wold 系数递推公式计算 Wold 系数:
ψ 0 = 1   ,      ψ 1 = b + a ψ 1 − 1 = b + a ψ 0 = a + b   , psi_0=1 , psi_1=b+apsi_{1-1}=b+apsi_0=a+b , ψ0=1 ,    ψ1=b+aψ11=b+aψ0=a+b ,

ψ j = a ψ j − 1 = ⋯ = a j − 1 ψ 1 = a j − 1 ( a + b )   ,      j = 2 , 3 , 4 , ⋯ psi_j=apsi_{j-1}=cdots=a^{j-1}psi_1=a^{j-1}(a+b) , j=2,3,4,cdots ψj=aψj1==aj1ψ1=aj1(a+b) ,    j=2,3,4,

A R M A ( 1 ,   1 ) {rm ARMA}(1,,1) ARMA(1,1) 模型的平稳解:
X t = ε t + ( a + b ) ∑ j = 0 ∞ a j − 1 ε t − j   . X_t=varepsilon_t+(a+b)sum_{j=0}^infty a^{j-1}varepsilon_{t-j} . Xt=εt+(a+b)j=0aj1εtj .

自协方差函数

由 Wold 系数计算自协方差函数:
γ 0 = σ 2 ∑ j = 0 ∞ ψ j 2 = σ 2 [ 1 + ∑ j = 1 ∞ ( a + b ) 2 a 2 ( j − 1 ) ] = σ 2 [ 1 + ( a + b ) 2 1 − a 2 ] = σ 2 1 + 2 a b + b 2 1 − a 2   . begin{aligned} gamma_0=sigma^2sum_{j=0}^inftypsi_j^2 &=sigma^2left[1+sum_{j=1}^infty(a+b) ^2a^{2(j-1)}right] \ &=sigma^2left[1+frac{(a+b)^2}{1-a^2}right] \ &=sigma^2frac{1+2ab+b^2}{1-a^2} . end{aligned} γ0=σ2j=0ψj2=σ2[1+j=1(a+b)2a2(j1)]=σ2[1+1a2(a+b)2]=σ21a21+2ab+b2 .

γ 1 = σ 2 ∑ j = 0 ∞ ψ j ψ j + 1 = σ 2 [ ψ 1 + ∑ j = 1 ∞ a ( a + b ) 2 a 2 ( j − 1 ) ] = σ 2 [ a + b + a ( a + b ) 2 1 − a 2 ] = σ 2 ( a + b ) ( 1 + a b ) 1 − a 2   . begin{aligned} gamma_1=sigma^2sum_{j=0}^inftypsi_jpsi_{j+1} &=sigma^2left[psi_1+sum_{j=1}^infty a(a+b) ^2a^{2(j-1)}right] \ &=sigma^2left[a+b+afrac{(a+b)^2}{1-a^2}right] \ &=sigma^2frac{(a+b)(1+ab)}{1-a^2} . end{aligned} γ1=σ2j=0ψjψj+1=σ2[ψ1+j=1a(a+b)2a2(j1)]=σ2[a+b+a1a2(a+b)2]=σ21a2(a+b)(1+ab) .

γ k = σ 2 ∑ j = 0 ∞ ψ j ψ j + k = σ 2 a ∑ j = 0 ∞ ψ j ψ j + k − 1 = a γ k − 1 = a 2 γ k − 2 = ⋯ = a k − 1 γ 1 = a k − 1 σ 2 ( a + b ) ( 1 + a b ) 1 − a 2 . begin{aligned} gamma_k&=sigma^2sum_{j=0}^inftypsi_jpsi_{j+k} =sigma^2asum_{j=0}^inftypsi_jpsi_{j+k-1} \ &=agamma_{k-1}=a^2gamma_{k-2}=cdots=a^{k-1}gamma_1=a^{k-1}sigma^2frac{(a+b)(1+ab)}{1-a^2} . end{aligned} γk=σ2j=0ψjψj+k=σ2aj=0ψjψj+k1=aγk1=a2γk2==ak1γ1=ak1σ21a2(a+b)(1+ab).

用 Yule-Walker 方程计算自协方差函数:

对模型方程两边同乘 X t − k   ,   k = 0 , 1 , 2 , ⋯ X_{t-k} , ,k=0,1,2,cdots Xtk ,k=0,1,2, 并取期望,由于 A R M A ( 1 ,   1 ) {rm ARMA}(1,,1) ARMA(1,1) 序列的合理性: E ( ε t X t − k ) = 0 ,   k ≥ 1 {rm E}(varepsilon_tX_{t-k})=0,,kgeq1 E(εtXtk)=0,k1 ,有
γ 0 = a γ 1 + E ( X t ε t ) + b E ( X t ε t − 1 )   , gamma_0=agamma_1+{rm E}(X_tvarepsilon_t)+b{rm E}(X_tvarepsilon_{t-1}) , γ0=aγ1+E(Xtεt)+bE(Xtεt1) ,

γ 1 = a γ 0 + 0 + b E ( X t − 1 ε t − 1 ) gamma_1=agamma_0+0+b{rm E}(X_{t-1}varepsilon_{t-1}) γ1=aγ0+0+bE(Xt1εt1)

γ k = a γ k − 1 + 0 + b ⋅ 0   ,      k = 2 , 3 , ⋯ gamma_k=agamma_{k-1}+0+bcdot0 , k=2,3,cdots γk=aγk1+0+b0 ,    k=2,3,

由 Wold 系数表示知 E ( X t ε t − j ) = σ 2 ψ j {rm E}(X_tvarepsilon_{t-j})=sigma^2psi_j E(Xtεtj)=σ2ψj ,所以
γ 0 = a γ 1 + σ 2 [ 1 + b ( a + b ) ]   , gamma_0=agamma_1+sigma^2[1+b(a+b)] , γ0=aγ1+σ2[1+b(a+b)] ,

γ 1 = a γ 0 + σ 2 b   , gamma_1=agamma_0+sigma^2b , γ1=aγ0+σ2b ,

γ k = a γ k − 1 = a k − 1 γ 1   ,      k = 2 , 3 , ⋯ gamma_k=agamma_{k-1}=a^{k-1}gamma_1 , k=2,3,cdots γk=aγk1=ak1γ1 ,    k=2,3,

求解得自协方差函数为
γ k = { σ 2 1 + 2 a b + b 2 1 − a 2   , k = 0   ; σ 2 ( a + b ) ( 1 + a b ) 1 − a 2   , k = 1   ; a k − 1 σ 2 ( a + b ) ( 1 + a b ) 1 − a 2   , k = 2 , 3 , 4 , ⋯ gamma_k=left{begin{array}{lll} sigma^2dfrac{1+2ab+b^2}{1-a^2} , &k=0 ;\ \ sigma^2dfrac{(a+b)(1+ab)}{1-a^2} , &k=1 ;\ \ a^{k-1}sigma^2dfrac{(a+b)(1+ab)}{1-a^2} , &k=2,3,4,cdots end{array} right. γk=σ21a21+2ab+b2 ,σ21a2(a+b)(1+ab) ,ak1σ21a2(a+b)(1+ab) ,k=0 ;k=1 ;k=2,3,4,

自相关系数和偏相关系数

自相关函数为
ρ k = { 1   , k = 0   ; ( a + b ) ( 1 + a b ) 1 + 2 a b + b 2   , k = 1   ; a ρ k − 1 = a k − 1 ρ 1   , k = 2 , 3 , 4 , ⋯ rho_k=left{begin{array}{lll} 1 , &k=0 ;\ \ dfrac{(a+b)(1+ab)}{1+2ab+b^2} , &k=1 ;\ \ arho_{k-1}=a^{k-1}rho_1 , &k=2,3,4,cdots end{array} right. ρk=1 ,1+2ab+b2(a+b)(1+ab) ,aρk1=ak1ρ1 ,k=0 ;k=1 ;k=2,3,4,

用 Yule-Walker 方程计算偏相关系数的前几项
a 1 , 1 = ρ 1 = ( a + b ) ( 1 + a b ) 1 + 2 a b + b 2 . a_{1,1}=rho_1=dfrac{(a+b)(1+ab)}{1+2ab+b^2}. a1,1=ρ1=1+2ab+b2(a+b)(1+ab).
写出 a 2 , 2 a_{2,2} a2,2 满足的 Yule-Walker 方程
[ γ 0 γ 1 γ 1 γ 0 ] [ a 2 , 1 a 2 , 2 ] = [ γ 1 γ 2 ] left[begin{array}{cc} gamma_0 & gamma_1 \ gamma_1 & gamma_0 \ end{array} right] left[begin{array}{cc} a_{2,1} \ a_{2,2} \ end{array} right]=left[begin{array}{cc} gamma_1 \ gamma_2 \ end{array} right] [γ0γ1γ1γ0][a2,1a2,2]=[γ1γ2]

[ 1 ρ 1 ρ 1 1 ] [ a 2 , 1 a 2 , 2 ] = [ ρ 1 ρ 2 ] = [ ρ 1 a ρ 1 ] left[begin{array}{cc} 1 & rho_1 \ rho_1 & 1 \ end{array} right] left[begin{array}{cc} a_{2,1} \ a_{2,2} \ end{array} right]=left[begin{array}{cc} rho_1 \ rho_2 \ end{array} right]=left[begin{array}{cc} rho_1 \ arho_1 \ end{array} right] [1ρ1ρ11][a2,1a2,2]=[ρ1ρ2]=[ρ1aρ1]

由Cramer 法则
a 2 , 2 = ∣ 1 ρ 1 ρ 1 a ρ 1 ∣ ∣ 1 ρ 1 ρ 1 1 ∣ = ρ 1 ( a − ρ 1 ) 1 − ρ 1 2 a_{2,2}=frac{left|begin{array}{cc} 1 & rho_1 \ rho_1 & arho_1 \ end{array} right|}{left|begin{array}{cc} 1 & rho_1 \ rho_1 & 1 \ end{array} right|}=frac{rho_1(a-rho_1)}{1-rho_1^2} a2,2=1ρ1ρ111ρ1ρ1aρ1=1ρ12ρ1(aρ1)
同理可得
a 3 , 3 = ∣ 1 ρ 1 ρ 1 ρ 1 1 ρ 2 ρ 2 ρ 1 ρ 3 ∣ ∣ 1 ρ 1 ρ 2 ρ 1 1 ρ 1 ρ 2 ρ 1 1 ∣ = ρ 1 ( a − ρ 1 ) 2 1 + 2 a ρ 1 3 − ρ 1 2 ( 2 + a 2 ) a_{3,3}=frac{left|begin{array}{ccc} 1 & rho_1 & rho_1\ rho_1 & 1 & rho_2\ rho_2 & rho_1 & rho_3 end{array} right|}{left|begin{array}{ccc} 1 & rho_1 & rho_2\ rho_1 & 1 & rho_1\ rho_2 & rho_1 & 1 end{array} right|}=frac{rho_1(a-rho_1)^2}{1+2arho_1^3-rho_1^2(2+a^2)} a3,3=1ρ1ρ2ρ11ρ1ρ2ρ111ρ1ρ2ρ11ρ1ρ1ρ2ρ3=1+2aρ13ρ12(2+a2)ρ1(aρ1)2
也可以用 Levinson 递推公式计算偏相关系数的前几项
a 2 , 2 = γ 2 − γ 1 a 1 , 1 γ 0 − γ 1 a 1 , 1 = ρ 2 − ρ 1 2 1 − ρ 1 2 = ρ 1 ( a − ρ 1 ) 1 − ρ 1 2   , a_{2,2}=dfrac{gamma_2-gamma_1a_{1,1}}{gamma_0-gamma_1a_{1,1}}=frac{rho_2-rho_1^2}{1-rho_1^2}=frac{rho_1(a-rho_1)}{1-rho_1^2} , a2,2=γ0γ1a1,1γ2γ1a1,1=1ρ12ρ2ρ12=1ρ12ρ1(aρ1) ,

a 2 , 1 = a 1 , 1 − a 2 , 2 a 1 , 1 = ρ 1 ( 1 − ρ 1 ( a − ρ 1 ) 1 − ρ 1 2 ) = ρ 1 ( 1 − a ρ 1 ) 1 − ρ 1 2 a_{2,1}=a_{1,1}-a_{2,2}a_{1,1}=rho_1left(1-frac{rho_1(a-rho_1)}{1-rho_1^2}right)=frac{rho_1(1-arho_1)}{1-rho_1^2} a2,1=a1,1a2,2a1,1=ρ1(11ρ12ρ1(aρ1))=1ρ12ρ1(1aρ1)

a 3 , 3 = γ 3 − γ 2 a 2 , 1 − γ 1 a 2 , 2 γ 0 − γ 1 a 2 , 1 − γ 2 a 2 , 2 = ρ 3 − ρ 2 a 2 , 1 − ρ 1 a 2 , 2 1 − ρ 1 a 2 , 1 − ρ 2 a 2 , 2 = a 2 ρ 1 − a ρ 1 2 ( 1 − a ρ 1 ) 1 − ρ 1 2 − ρ 1 2 ( a − ρ 1 ) 1 − ρ 1 2 1 − ρ 1 2 ( 1 − a ρ 1 ) 1 − ρ 1 2 − a ρ 1 2 ( a − ρ 1 ) 1 − ρ 1 2 = ρ 1 ( a − ρ 1 ) 2 1 + 2 a ρ 1 3 − ρ 1 2 ( 2 + a 2 ) begin{aligned} a_{3,3}&=frac{gamma_3-gamma_2a_{2,1}-gamma_1a_{2,2}}{gamma_0-gamma_1a_{2,1}-gamma_2a_{2,2}}\ \ &=frac{rho_3-rho_2a_{2,1}-rho_1a_{2,2}}{1-rho_1a_{2,1}-rho_2a_{2,2}} \ \ &=frac{a^2rho_1-dfrac{arho_1^2(1-arho_1)}{1-rho_1^2}-dfrac{rho_1^2(a-rho_1)}{1-rho_1^2}}{1-dfrac{rho_1^2(1-arho_1)}{1-rho_1^2}-dfrac{arho_1^2(a-rho_1)}{1-rho_1^2}} \ \ &=frac{rho_1(a-rho_1)^2}{1+2arho_1^3-rho_1^2(2+a^2)} end{aligned} a3,3=γ0γ1a2,1γ2a2,2γ3γ2a2,1γ1a2,2=1ρ1a2,1ρ2a2,2ρ3ρ2a2,1ρ1a2,2=11ρ12ρ12(1aρ1)1ρ12aρ12(aρ1)a2ρ11ρ12aρ12(1aρ1)1ρ12ρ12(aρ1)=1+2aρ13ρ12(2+a2)ρ1(aρ1)2

最后

以上就是醉熏蜡烛为你收集整理的【时间序列分析】12. ARMA(1,1)模型 A R M A ( 1 , 的全部内容,希望文章能够帮你解决【时间序列分析】12. ARMA(1,1)模型 A R M A ( 1 , 所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(44)

评论列表共有 0 条评论

立即
投稿
返回
顶部