我是靠谱客的博主 平常小蘑菇,最近开发中收集的这篇文章主要介绍数据敏感度-谛听安全运营心得,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

什么是数据敏感度?

数据敏感度高的人,看到数字,两眼冒光,早已飞速纵身跳到3米外,甚至10米外,脑子里在观察、找问题、找机会,喜不自禁或者哀叹不喋也或者沉着淡定。

对数据不敏感的人,看到数字,则晃晃脑袋,目光发散,心里嘀咕,这是什么?这能说明什么?

每个人对数据的敏感度截然不同,因为这和每个人的经验相关,所以有人对数据敏感,有人对数据无感。

数据敏感度是业务理解力、客户理解力、数据理解力三者的综合结果。很多人误以为数据敏感度只是数据能力强。事实上,要对数据敏感,业务理解力、客户理解力、数据理解力,者缺一不可。因为数据只是对商业行为的客观描述,只有真正懂数据背后的意义,才能解读数据,才能挖掘数据背后的含义,才能形成数据敏感。

 

 

如何判断数据敏感度高不高?

1. 看到数据后,能一眼判断数据靠不靠谱,因为很多数据本身不靠谱,有指标口径问题、有数据质量问题,也有可能搞数据的人真的不理解业务,放了个风马牛不相及的数据。

2. 看到数据后,能马上思考数据本身的商业意义,有人能快速定位数据背后的原因,并找到机会,有人眼里只是一个数字。对数据的解读基于对数据的理解,对数据的理解则基于对业务、客户、数据的理解。

懂业务、懂客户,但不懂数据的人,就好比个人很有故事,内心早已百转千回,把自己感动哭了,但就是讲不出来,或者讲出来了,也没有说服力。因为听者觉得讲的是他的主观看法,没有公信力。所以数据的价值之一,就是统一视角,统一事实,如果还能统一对事实的理解,就更牛了。让数据说话,不要讲那么多我怎么想,因为我怎么想一点不重要。但客户怎么想、市场怎么想很重要,用数据来表达业务、客户的诉求,大家更能达成一致。所以渔歌一直认为数据是一种语言,数据价值在于通过语言的应用,把商业价值传递、应用起来。

而懂数据,但不懂业务、不懂客户的人,就好像手里拿着最权威、最专业、满满精华的朗文英汉大字典,可那只是字典,不是文学史籍,不是诗词歌赋,也不是重大科学研究发现。因为拿字典的人不知道怎么把字典里的一个个单词串成诗词歌赋,就连组成句话都困难,在他眼里每个单词都是孤零零的存在。

所以数据敏感度是懂业务懂客户,懂数据的化学反应的结果,们互相渗透,互相融合。

如何培养数据敏感度?

对于懂业务客户,但不懂数据的人,需要的是从业务走向数据。从业务走向数据,最简单、有效的方法:

1. 找数据大拿对焦业务。哪怕自己被diss的体无完肤,或者只能听,说话的机会都没有,都没关系。听高手一席话,胜读十年书。大拿会输入更高的视野、格局、方法、乃至细节。

2. 听过、看过都不如自己干过。从最小的事做起,给自己的业务设计一张业务监控报表,而后每天上班第一件事情就是看报表,再优化报表。目标只有个,通过数据监控和分析,找到产品问题和机会。

3. 主导一个大的数据分析专题,主导发起、分析框架、分析过程、分析报告全部独立完成,如果能请擅长数据的大拿们提建议,就更好了。经过从业务到数据的洗礼,人会有有混沌,但最后焕然一新的感觉。不断学习成为一个有数据框架、有分析思路、有数据感觉的人。

4. 培养数据习惯,和做数据的朋友保持沟通,把别人当学习对象,不要把别人当工具。

对于懂数据,但不懂业务客户的人,需要让自己从数据跨越到业务客户。把自己手里拿的朗文英汉大辞典,变成自己武功秘笈,可以降龙十八掌,也可以凌波微步。

把自己当成业务1号位去推动业务的发展,而不是数据支撑的角色。这样数据才能从个个的数字,变成有价值的商业解读,并找到机会,也才能变成数据生产力。

1. 和业务大拿对焦业务。记得是对焦业务,不是对焦数据,数据服务于业务。哪怕自己被diss的一塌糊涂,或者说话的机会都没有,都要去听、去思考,看大拿是怎么思考的,这其中数据能做什么。

2. 创造机会,去尝试数据和业务深度协同。比如共担业务目标,比如孵化一个新的业务。因为自己在生活中独立做件事,可能事情的影响面很小,导致视野、思维、环境约束不够,但在公司要做成一件事,哪怕一件小事都很难,因为有竞对,内部有一堆的人和事要协同。

经过积累经验后,把业务思维变成自己的习惯,在数据的日常工作中都带入业务思维,习惯的力量很强大。

最后,无论从数据走向业务,还是从业务走向数据,本质都是角色互换,能力叠加。相信在数据学习的道路上,你可以越走越远。

最后

以上就是平常小蘑菇为你收集整理的数据敏感度-谛听安全运营心得的全部内容,希望文章能够帮你解决数据敏感度-谛听安全运营心得所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(61)

评论列表共有 0 条评论

立即
投稿
返回
顶部