我是靠谱客的博主 眯眯眼小笼包,最近开发中收集的这篇文章主要介绍Tensorflow系列:Batch-Normalization层,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

Batch-Normalization有三种定义格式,第一种格式是低级版本,需要先计算均值和方差。后面的两种是封装后的,可以直接使用,下面分别介绍:

1、tf.nn.batch_normalization

  这个函数实现batch_normalization需要两步,分装程度较低,一般不使用
(1)tf.nn.moments(x, axes, name=None, keep_dims=False) ⇒ mean, variance: 
                统计矩,mean 是一阶矩,variance 则是二阶中心矩
(2)tf.nn.batch_normalization(x, mean, variance, offset, scale, variance_epsilon, name=None) 
                由函数接口可知,tf.nn.moments 计算返回的 mean 和 variance 作为 tf.nn.batch_normalization 参                  数进一步调用;
       
如我们需计算的 tensor 的 shape 为一个四元组 [batch_size, height, width, kernels],一个示例程序如下:   
import tensorflow as tf
shape = [128, 32, 32, 64]
a = tf.Variable(tf.random_normal(shape))
# a:activations
axis = list(range(len(shape)-1))
# len(x.get_shape())
a_mean, a_var = tf.nn.moments(a, axis)

得到a_mean和a_var以后可以进入第二步计算:

tf.nn.batch_normalization(
x, #输入
mean = a_mean,
variance = a_var,
offset, #tensor,偏移量
scale, # tensor,尺度缩放值
variance_epsilon, #避免除0
name=None) 
完整的实现:
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
import
numpy as np
from tensorflow.python.training.moving_averages import assign_moving_average
#
def batch_norm(x, train, eps=1e-05, decay=0.9, affine=True, name=None):
with tf.variable_scope(name, default_name='BatchNorm2d'):
params_shape = x.get_shape().as_list()
params_shape = params_shape[-1:]
moving_mean = tf.get_variable('mean', shape=params_shape,
initializer=tf.zeros_initializer,
trainable=False)
moving_variance = tf.get_variable('variance', shape=params_shape,
initializer=tf.ones_initializer,
trainable=False)
def mean_var_with_update():
axis = list(range(len(shape) - 1))
mean, variance = tf.nn.moments(x, axis, name='moments')
with tf.control_dependencies([assign_moving_average(moving_mean, mean, decay),#计算滑动平均值
assign_moving_average(moving_variance, variance, decay)]):
return tf.identity(mean), tf.identity(variance)
if train:#亲测tf.cond的第一个函数不能直接写成ture or false,所以只好用一个很蠢的方法。
xx = tf.constant(3)
yy = tf.constant(4)
else:
xx = tf.constant(4)
yy = tf.constant(3)
mean, variance = tf.cond(xx<yy, mean_var_with_update, lambda: (moving_mean, moving_variance))
if affine:
beta = tf.get_variable('beta', params_shape,
initializer=tf.zeros_initializer)
gamma = tf.get_variable('gamma', params_shape,
initializer=tf.ones_initializer)
x = tf.nn.batch_normalization(x, mean, variance, beta, gamma, eps)
else:
x = tf.nn.batch_normalization(x, mean, variance, None, None, eps)
return x
shape = [128, 32, 32, 64]
a = tf.Variable(tf.random_normal(shape))
d = batch_norm(a,True)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
print(sess.run(a))
print(sess.run(d))

2、tf.contrib.layers.batch_norm

tf.contrib.layers.batch_norm(
inputs,#输入
decay=0.999,#衰减系数。合适的衰减系数值接近1.0,特别是含多个9的值:0.999,0.99,0.9。如果训练集表现很好而验证/测试集表现得不好,选择
#小的系数(推荐使用0.9)。
center=True,#如果为True,有beta偏移量;如果为False,无beta偏移量
epsilon=0.001,#避免被零除
scale=False,#如果为True,则乘以gamma。如果为False,gamma则不使用。当下一层是线性的时(例如nn.relu),由于缩放可以由下一层完成,
#所以可以禁用该层。
param_initializers=None,# beta, gamma, moving mean and moving variance的优化初始化
activation_fn=None,#用于激活,默认为线性激活函数
updates_collections=tf.GraphKeys.UPDATE_OPS,
param_regularizers=None,# beta and gamma正则化优化 is_training=True,#is_training:图层是否处于训练模式。
outputs_collections=None,
reuse=None, variables_collections=None,
data_format=DATA_FORMAT_NHWC,
trainable=True, batch_weights=None, fused=None,
zero_debias_moving_mean=False,#如果想要提高稳定性,zero_debias_moving_mean设为True
scope=None,
renorm=False,
renorm_clipping=None,
renorm_decay=0.99,
adjustment=None)

3、tf.layers.batch_normalization(参数含义和第二种差不过,不在单独介绍)


tf.layers.batch_normalization(
inputs,
axis=-1,
momentum=0.99,
epsilon=0.001,
center=True,
scale=True,
beta_initializer=tf.zeros_initializer(),
gamma_initializer=tf.ones_initializer(),
moving_mean_initializer=tf.zeros_initializer(),
moving_variance_initializer=tf.ones_initializer(),
beta_regularizer=None,
gamma_regularizer=None,
beta_constraint=None,
gamma_constraint=None,
training=False,
trainable=True,
name=None,
reuse=None,
renorm=False,
renorm_clipping=None,
renorm_momentum=0.99,
fused=None,
virtual_batch_size=None,
adjustment=None)











最后

以上就是眯眯眼小笼包为你收集整理的Tensorflow系列:Batch-Normalization层的全部内容,希望文章能够帮你解决Tensorflow系列:Batch-Normalization层所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(39)

评论列表共有 0 条评论

立即
投稿
返回
顶部