概述
Learning Generalized Deep Feature Representation for Face Anti-Spoofing
标签: anti-spooing
论文出处:IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 10, OCTOBER 2018
本文提出的方法
本文提出的是一种基于C3D+domain generalization的方案。
使用C3D提取出的特征放入SVM进行分类,对于C3D来说,网络结构在文中有给出,主要是对于Generalization loss的涉及,是利用了domain generalization的方案[54],这样能够增加模型的泛化能力,有效避免过拟合并且对于陌生数据能够有较强适应能力。
对于输入的数据进行了两方面的预处理,一个是空间增强,一个是gamma增强。这样能扩大样本。
最后取得了不错的结果。 并且在各个交叉数据集中也能有较好的泛化能力。
不过本文的C3D以及domain generalization并不是很熟悉,以后需要看相关知识。
收获
1、一种3DCNN的解决方案(可以涉及到时间和空间两个维度)
金句: In particular, 3D convolutional neural networks
(3D CNN), which have been proved to be efficient for action
recognition task [11], are employed to learn spoofing-specific
information based on typical printed and replay video attacks
参考文献重点摘录可作为以后读
C3D
[42] J. Gan, S. Li, Y. Zhai, and C. Liu, “3D convolutional neural network
based on face anti-spoofing,” in Proc. 2nd Int. Conf. Multimedia Image
Process. (ICMIP), Mar. 2017, pp. 1–5.
domain generalization
[54] H. Li, S. J. Pan, S. Wang, and A. C. Kot, “Domain generalization with
adversarial feature learning,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2018
其他传统的比较好的方案
[6] J. Galbally, S. Marcel, and J. Fierrez, “Image quality assessment
for fake biometric detection: Application to iris, fingerprint, and face
recognition,” IEEE Trans. Image Process., vol. 23, no. 2, pp. 710–724,
Feb. 2014.
最后
以上就是不安手套为你收集整理的Learning Generalized Deep Feature RepresentationLearning Generalized Deep Feature Representation for Face Anti-Spoofing的全部内容,希望文章能够帮你解决Learning Generalized Deep Feature RepresentationLearning Generalized Deep Feature Representation for Face Anti-Spoofing所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复