概述
Description
Gena loves sequences of numbers. Recently, he has discovered a new type of sequences which he called an almost arithmetical progression. A sequence is an almost arithmetical progression, if its elements can be represented as:
- a1 = p, where p is some integer;
- ai = ai - 1 + ( - 1)i + 1·q(i > 1), where q is some integer.
Right now Gena has a piece of paper with sequence b, consisting of n integers. Help Gena, find there the longest subsequence of integers that is an almost arithmetical progression.
Sequence s1, s2, ..., sk is a subsequence of sequence b1, b2, ..., bn, if there is such increasing sequence of indexesi1, i2, ..., ik(1 ≤ i1 < i2 < ... < ik ≤ n), that bij = sj. In other words, sequence s can be obtained from b by crossing out some elements.
Input
The first line contains integer n(1 ≤ n ≤ 4000). The next line contains n integers b1, b2, ..., bn(1 ≤ bi ≤ 106).
Output
Print a single integer — the length of the required longest subsequence.
Sample Input
2 3 5
2
4 10 20 10 30
3
Hint
In the first test the sequence actually is the suitable subsequence.
In the second test the following subsequence fits: 10, 20, 10.
dp的式子很简单,不过比较难想。
用一个二维数组记录。
——>>状态:dp[i][j] 表示满足条件的最后两个数是 ai 和 aj 的子序列长度
状态转移方程:dp[i][j] = dp[last][i] + 1;(last 是小于 i 的但离 i 最近的 a[last] == a[j] 成立的位置)
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
const int MAXN=4000+10;
int a[MAXN],dp[MAXN][MAXN];
int main()
{
int n;
scanf("%d",&n);
int i,j,last;
for(i=1;i<=n;++i)
{
scanf("%d",&a[i]);
}
int ans=0;
dp[0][0]=0;
for(j=1;j<=n;++j)
for(i=0,last=0;i<j;++i)
{
dp[i][j]=dp[last][i]+1;//dp[0][j]都会默认是1,dp[1][j]默认就会是2
if(a[i]==a[j])last=i;
ans=max(ans,dp[i][j]);
}
printf("%dn",ans);
return 0;
}
最后
以上就是怕黑丝袜为你收集整理的Almost Arithmetical Progression的全部内容,希望文章能够帮你解决Almost Arithmetical Progression所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复