我是靠谱客的博主 无情夕阳,最近开发中收集的这篇文章主要介绍最大信息系数(maximal information coefficient,MIC)核心程序,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

/*
* Libmine core library.
*
* This code is written by Davide Albanese <davide.albanese@gmail.com>
* and Michele Filosi <filosi@fbk.eu>.
*
* Copyright (C) 2012-2016 Davide Albanese, Copyright (C) 2012 Michele
* Filosi, Copyright (C) 2012 Fondazione Bruno Kessler.
*
* References:
*
* Original MINE paper: DOI: 10.1126/science.1205438;
*
* Minepy paper: DOI: 10.1093/bioinformatics/bts707D;
*
* MIC_e and TIC: DOI: arXiv:1505.02213 and DOI: arXiv:1505.02214;
*
* GMIC: DOI: arXiv:1308.5712.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <float.h>
#include "mine.h"
char *libmine_version = LIBMINE_VERSION;
#define MAX(a, b) (((a) > (b) ? (a) : (b)))
#define MIN(a, b) (((a) < (b) ? (a) : (b)))
#define TRUE 1
#define FALSE 0
void quicksort(double *a, int *idx, int l, int u)
{
int i, m, idx_temp;
double a_temp;
if (l >= u)
return;
m = l;
for (i=l+1; i<=u; i++)
{
if (a[i] < a[l])
{
++m;
idx_temp = idx[m];
idx[m] = idx[i];
idx[i] = idx_temp;
a_temp = a[m];
a[m] = a[i];
a[i] = a_temp;
}
}
idx_temp = idx[l];
idx[l] = idx[m];
idx[m] = idx_temp;
a_temp = a[l];
a[l] = a[m];
a[m] = a_temp;
quicksort(a, idx, l, m-1);
quicksort(a, idx, m+1, u);
}
int *argsort(double *a, int n)
{
double *a_cpy;
int i, *idx;
a_cpy = (double *) malloc(n * sizeof(double));
if (a_cpy == NULL)
return NULL;
idx = (int *) malloc(n * sizeof(int));
if (idx == NULL)
{
free(a_cpy);
return NULL;
}
/* fill a_cpy */
memcpy(a_cpy, a, n * sizeof(double));
/* fill idx */
for (i=0; i<n; i++)
idx[i] = i;
quicksort(a_cpy, idx, 0, n-1);
free(a_cpy);
return idx;
}
/*
* Returns the entropy induced by the points on the partition Q.
* See section 3.2.1, page 10, SOM.
*
* Parameters
*
cumhist : cumulative histogram matrix along P_map
*
cumhist_log : log(cumhist)
*
q : number of rows of cumhist (number of partitions in Q_map)
*
p : number of cols of cumhist (number of partitions in P_map)
*
n : total number of points
*/
double hq(int **cumhist, double **cumhist_log, int q, int p, int n)
{
int i;
double total, total_log, prob, prob_log, H = 0.0;
total = (double) n;
total_log = log(total);
for (i=0; i<q; i++)
{
prob = (double) cumhist[i][p-1] / total;
if (prob != 0)
{
prob_log = cumhist_log[i][p-1] - total_log;
H -= prob * prob_log;
}
}
return H;
}
/*
* Returns the entropy induced by the points on the partition
* <c_0, c_s, c_t>. See line 5 of Algorithm 2, SOM.
*
* Parameters
*
c : c_1, ..., c_p
*
c_log : log(c)
*
s : s in c_s
*
t : t in c_t
*/
double hp3(int *c, double *c_log, int s, int t)
{
int sum;
double total, total_log, prob, prob_log, H = 0.0;
if (s == t)
return 0.0;
total = (double) c[t-1];
total_log = log(total);
prob = (double) c[s-1] / total;
if (prob != 0)
{
prob_log = c_log[s-1] - total_log;
H -= prob * prob_log;
}
sum = c[t-1] - c[s-1];
prob = (double) sum / total;
if (sum != 0)
{
prob_log = log((double) sum) - total_log;
H -= prob * prob_log;
}
return H;
}
/*
* Returns the entropy induced by the points on the partition
* <c_0, c_s, c_t>, Q. See line 5 of Algorithm 2 in SOM.
*
* Parameters
*
cumhist : cumulative histogram matrix along P_map
*
cumhist_log : log(cumhist)
*
c : c_1, ..., c_p
*
q : number of rows of cumhist (number of partitions in Q_map)
*
p : number of cols of cumhist (number of partitions in P_map)
*
s : s in c_s
*
t : t in c_t
*/
double hp3q(int **cumhist, double **cumhist_log, int *c, int q, int p, int s, int t)
{
int i, sum;
double total, total_log, prob, prob_log, H = 0.0;
total = (double) c[t-1];
total_log = log(total);
for (i=0; i<q; i++)
{
prob = (double) cumhist[i][s-1] / total;
if (prob != 0)
{
prob_log = cumhist_log[i][s-1] - total_log;
H -= prob * prob_log;
}
sum = cumhist[i][t-1] - cumhist[i][s-1];
prob = (double) sum / total;
if (prob != 0)
{
prob_log = log((double) sum) - total_log;
H -= prob * prob_log;
}
}
return H;
}
/*
* Returns the entropy induced by the points on the partition <c_s, c_t>
* and Q. See line 13 of Algorithm 2, SOM.
*
* Parameters
*
cumhist : cumulative histogram matrix along P_map
*
c : c_1, ..., c_p
*
q : number of rows of cumhist (number of partitions
*
in Q_map)
*
p : number of cols of cumhist (number of partitions
*
in P_map)
*
s : s in c_s
*
t : t in c_t
*/
double hp2q(int **cumhist, int *c, int q, int p, int s, int t)
{
int i, sum;
double total, total_log, prob, prob_log, H = 0.0 ;
if (s == t)
return 0.0;
total = (double) (c[t-1] - c[s-1]);
total_log = log(total);
for (i=0; i<q; i++)
{
sum = cumhist[i][t-1] - cumhist[i][s-1];
prob = (double) sum / total;
if (prob != 0)
{
prob_log = log((double) sum) - total_log;
H -= prob * prob_log;
}
}
return H;
}
/*
* Returns the map Q: D -> {0, ...,q-1}.
* See Algorithm 3 in SOM.
*
* Parameters
*
dy (IN): y-data sorted in increasing order
*
n (IN): number of elements of dy
*
y (IN): an integer greater than 1
*
Q_map (OUT) : the map Q. Q_map must be a preallocated vector of
*
size n
*
q (OUT) : number of partitions in Q_map. q can be < y
*
* Returns
*
0
*/
int EquipartitionYAxis(double *dy, int n, int y, int *Q_map, int *q)
{
int i, j, s, h, curr;
double temp1, temp2;
double rowsize = (double) n / (double) y;
i = 0;
h = 0;
curr = 0;
while (i < n)
{
s = 1;
for (j=i+1; j<n; j++)
{
if (dy[i] == dy[j])
++s;
else
break;
}
temp1 = fabs((double) h + (double) s - rowsize);
temp2 = fabs((double) h - rowsize);
if ((h != 0) && (temp1 >= temp2))
{
++curr;
h = 0;
temp1 = (double) n - (double) i;
temp2 = (double) y - (double) curr;
rowsize = temp1 / temp2;
}
for (j=0; j<s; j++)
Q_map[i+j] = curr;
i += s;
h += s;
}
*q = curr + 1;
return 0;
}
/*
* Returns the map P: D -> {0, ...,p-1}.
*
* Parameters
*
dx (IN) : x-data sorted in increasing order
*
n (IN) : number of elements of dx
*
Q_map (IN) : the map Q computed by EquipartitionYAxis sorted in
*
increasing order by dx-values
*
P_map (OUT) : the map P. P_map must be a preallocated vector
*
of size n
*
p (OUT) : number of partitions in P_map
*
* Returns
*
0 on success, 1 if an error occurs
*/
int GetClumpsPartition(double *dx, int n, int *Q_map, int *P_map, int *p)
{
int i, j, flag, c, s;
int *Q_tilde;
i = 0;
c = -1;
Q_tilde = (int *) malloc (n * sizeof(int));
if (Q_tilde == NULL)
return 1;
memcpy(Q_tilde, Q_map, n*sizeof(int));
while (i < n)
{
s = 1;
flag = FALSE;
for (j=i+1; j<n; j++)
{
if (dx[i] == dx[j])
{
if (Q_tilde[i] != Q_tilde[j])
flag = TRUE;
++s;
}
else
break;
}
if ((s > 1) && (flag == TRUE))
{
for (j=0; j<s; j++)
Q_tilde[i+j] = c;
--c;
}
i += s;
}
i = 0;
P_map[0] = 0;
for (j=1; j<n; j++)
{
if (Q_tilde[j] != Q_tilde[j-1])
++i;
P_map[j] = i;
}
*p = i + 1;
free(Q_tilde);
return 0;
}
/*
* Returns the map P: D -> {0, ...,p-1}.
*
* Parameters
*
dx (IN) : x-data sorted in increasing order
*
n (IN) : number of elements of dx
*
k_hat (IN) : maximum number of clumps
*
Q_map (IN) : the map Q computed by EquipartitionYAxis sorted in
*
increasing order by dx-values
*
P_map (OUT) : the map P. P_map must be a preallocated vector
*
of size n
*
p (OUT) : number of partitions in P_map
*
* Returns
*
0 on success, 1 if an error occurs
*/
int GetSuperclumpsPartition(double *dx, int n, int k_hat, int *Q_map,
int *P_map, int *p)
{
int i, ret;
double *dp;
/* clumps */
ret = GetClumpsPartition(dx, n, Q_map, P_map, p);
if (ret)
return 1;
/* superclumps */
if (*p > k_hat)
{
dp = (double *) malloc (n * sizeof(double));
if (dp == NULL)
return 1;
for (i=0; i<n; i++)
dp[i] = (double) P_map[i];
EquipartitionYAxis(dp, n, k_hat, P_map, p);
free(dp);
}
return 0;
}
/* Returns (c_1, ..., c_k) */
int *compute_c(int *P_map, int p, int n)
{
int i;
int *c;
c = (int *) malloc (p * sizeof(int));
if (c == NULL)
return NULL;
for (i=0; i<p; i++)
c[i] = 0;
for (i=0; i<n; i++)
c[P_map[i]]++;
for (i=1; i<p; i++)
c[i] += c[i-1];
return c;
}
double *compute_c_log(int *c, int p)
{
int i;
double *c_log;
c_log = (double *) malloc (p * sizeof(double));
if (c_log == NULL)
return NULL;
for (i=0; i<p; i++)
if (c[i] != 0)
c_log[i] = log((double) c[i]);
else
c_log[i] = 0;
return c_log;
}
/* Returns the cumulative histogram matrix along P_map */
int **compute_cumhist(int *Q_map, int q, int *P_map, int p, int n)
{
int i, j;
int **cumhist;
cumhist = (int **) malloc (q * sizeof(int *));
if (cumhist == NULL)
return NULL;
for (i=0; i<q; i++)
{
cumhist[i] = (int *) malloc (p * sizeof(int));
if (cumhist[i] == NULL)
{
for (j=0; j<i; j++)
free(cumhist[j]);
free(cumhist);
return NULL;
}
for (j=0; j<p; j++)
cumhist[i][j] = 0;
}
for (i=0; i<n; i++)
cumhist[Q_map[i]][P_map[i]]++;
for (i=0; i<q; i++)
for (j=1; j<p; j++)
cumhist[i][j] += cumhist[i][j-1];
return cumhist;
}
double ** compute_cumhist_log(int **cumhist, int q, int p)
{
int i, j;
double **cumhist_log;
cumhist_log = (double **) malloc (q * sizeof(double *));
if (cumhist_log == NULL)
return NULL;
for (i=0; i<q; i++)
{
cumhist_log[i] = (double *) malloc (p * sizeof(double));
if (cumhist_log[i] == NULL)
{
for (j=0; j<i; j++)
free(cumhist_log[j]);
free(cumhist_log);
return NULL;
}
for (j=0; j<p; j++)
if (cumhist[i][j] != 0)
cumhist_log[i][j] = log((double) cumhist[i][j]);
else
cumhist_log[i][j] = 0;
}
return cumhist_log;
}
/* Initializes the I matrix */
double **init_I(int p, int x)
{
int i, j;
double **I;
I = (double **) malloc ((p+1) * sizeof(double *));
if (I == NULL)
return NULL;
for (i=0; i<=p; i++)
{
I[i] = (double *) malloc ((x+1) * sizeof(double));
if (I[i] == NULL)
{
for (j=0; j<i; j++)
free(I[j]);
free(I);
return NULL;
}
for (j=0; j<=x; j++)
I[i][j] = 0.0;
}
return I;
}
/* Computes the HP2Q matrix */
double **compute_HP2Q(int **cumhist, int*c, int q, int p)
{
int i, j, s, t;
double **HP2Q;
HP2Q = (double **) malloc ((p+1) * sizeof(double *));
if (HP2Q == NULL)
return NULL;
for (i=0; i<=p; i++)
{
HP2Q[i] = (double *) malloc ((p+1) * sizeof(double));
if (HP2Q[i] == NULL)
{
for (j=0; j<i; j++)
free(HP2Q[j]);
free(HP2Q);
return NULL;
}
}
for (t=3; t<=p; t++)
for (s=2; s<=t; s++)
HP2Q[s][t] = hp2q(cumhist, c, q, p, s, t);
return HP2Q;
}
/*
* Returns the normalized MI scores.
*
* Parameters
*
dx (IN) : x-data sorted in increasing order by dx-values
*
dy (IN) : y-data sorted in increasing order by dx-values
*
n (IN) : number of elements in dx and dy
*
Q_map (IN) : the map Q computed by EquipartitionYAxis() sorted in
*
increasing order by dx-values
*
q (IN) : number of partitions in Q_map
*
P_map (IN) : the map P computed by GetSuperclumpsPartition() sorted
*
in increasing order by Dx-values
*
p (IN) : number of partitions in P_map
*
x (IN) : maximum grid size on dx-values
*
score (OUT) : mutual information scores. score must be a
*
preallocated array of dimension x-1
* Returns
*
0 on success, 1 if an error occurs
*/
int OptimizeXAxis(double *dx, double *dy, int n, int *Q_map, int q,
int *P_map, int p, int x, double *score)
{
int i, s, t, l;
int *c;
int **cumhist;
double **I, **HP2Q;
double F, F_max, HQ, ct, cs;
double **cumhist_log, *c_log;
/* return score=0 if p=1 */
if (p == 1)
{
for (i=0; i<x-1; i++)
score[i] = 0.0;
return 0;
}
/* compute c */
c = compute_c(P_map, p, n);
if (c == NULL)
goto error_c;
/* precompute log(c) (log(c)=0 when c=0) */
c_log = compute_c_log(c, p);
if (c_log == NULL)
goto error_c_log;
/* compute the cumulative histogram matrix along P_map */
cumhist = compute_cumhist(Q_map, q, P_map, p, n);
if (cumhist == NULL)
goto error_cumhist;
/* precompute log(cumhist) (log(cumhist)=0 when cumhist=0) */
cumhist_log = compute_cumhist_log(cumhist, q, p);
if (cumhist == NULL)
goto error_cumhist_log;
/* I matrix initialization */
I = init_I(p, x);
if (I == NULL)
goto error_I;
/* Precomputes the HP2Q matrix */
HP2Q = compute_HP2Q(cumhist, c, q, p);
if (HP2Q == NULL)
goto error_HP2Q;
/* compute H(Q) */
HQ = hq(cumhist, cumhist_log, q, p, n);
/* Find the optimal partitions of size 2, Algorithm 2 in SOM, lines 3-8 */
for (t=2; t<=p; t++)
{
F_max = -DBL_MAX;
for (s=1; s<=t; s++)
{
F = hp3(c, c_log, s, t) - hp3q(cumhist, cumhist_log, c, q, p, s, t);
if (F > F_max)
{
I[t][2] = HQ + F;
F_max = F;
}
}
}
/*
* Inductively build the rest of the table of optimal partitions,
* Algorithm 2 in SOM, lines 10-17
*/
for (l=3; l<=x; l++)
{
for (t=l; t<=p; t++)
{
ct = (double) c[t-1];
F_max = -DBL_MAX;
for (s=l-1; s<=t; s++)
{
cs = (double) c[s-1];
F = ((cs/ct) * (I[s][l-1]-HQ)) - (((ct-cs)/ct) * HP2Q[s][t]);
if (F > F_max)
{
I[t][l] = HQ + F;
F_max = F;
}
}
}
}
/* Algorithm 2 in SOM, line 19 */
for (i=p+1; i<=x; i++)
I[p][i] = I[p][p];
/* score */
for (i=2; i<=x; i++)
score[i-2] = I[p][i] / MIN(log(i), log(q));
/* start frees */
for (i=0; i<=p; i++)
free(HP2Q[i]);
free(HP2Q);
for (i=0; i<=p; i++)
free(I[i]);
free(I);
for (i=0; i<q; i++)
free(cumhist_log[i]);
free(cumhist_log);
for (i=0; i<q; i++)
free(cumhist[i]);
free(cumhist);
free(c_log);
free (c);
/* end frees */
return 0;
/* gotos */
error_HP2Q:
for (i=0; i<=p; i++)
free(I[i]);
free(I);
error_I:
for (i=0; i<q; i++)
free(cumhist_log[i]);
free(cumhist_log);
error_cumhist_log:
for (i=0; i<q; i++)
free(cumhist[i]);
free(cumhist);
error_cumhist:
free(c_log);
error_c_log:
free(c);
error_c:
return 1;
}
/*
* Returns an initialized mine_score structure. Returns NULL if an error
* occurs.
*/
mine_score *init_score(mine_problem *prob, mine_parameter *param)
{
int i, j;
double B;
mine_score *score;
if ((param->alpha > 0.0) && (param->alpha <= 1.0))
B = MAX(pow(prob->n, param->alpha), 4);
else if (param->alpha >= 4)
B = MIN(param->alpha, prob->n);
else
goto error_score;
score = (mine_score *) malloc (sizeof(mine_score));
if (score == NULL)
goto error_score;
score->n = MAX((int) floor(B/2.0), 2) - 1;
score->m = (int *) malloc(score->n * sizeof(int));
if (score->m == NULL)
goto error_score_m;
for (i=0; i<score->n; i++)
score->m[i] = (int) floor((double) B / (double) (i+2)) - 1;
score->M = (double **) malloc (score->n * sizeof(double *));
if (score->M == NULL)
goto error_score_M;
for (i=0; i<score->n; i++)
{
score->M[i] = (double *) malloc ((score->m[i]) * sizeof(double));
if (score->M[i] == NULL)
{
for (j=0; j<i; j++)
free(score->M[j]);
goto error_score_M_i;
}
}
return score;
error_score_M_i:
free(score->M);
error_score_M:
free(score->m);
error_score_m:
free(score);
error_score:
return NULL;
}
/* See mine.h */
mine_score *mine_compute_score(mine_problem *prob, mine_parameter *param)
{
int i, j, k, p, q, ret;
double *xx, *yy, *xy, *yx, *M_temp;
int *ix, *iy;
int *Q_map_temp, *Q_map, *P_map;
mine_score *score;
score = init_score(prob, param);
if (score == NULL)
goto error_score;
xx = (double *) malloc (prob->n * sizeof(double));
if (xx == NULL)
goto error_xx;
yy = (double *) malloc (prob->n * sizeof(double));
if (yy == NULL)
goto error_yy;
xy = (double *) malloc (prob->n * sizeof(double));
if (xy == NULL)
goto error_xy;
yx = (double *) malloc (prob->n * sizeof(double));
if (yx == NULL)
goto error_yx;
Q_map_temp = (int *) malloc (prob->n * sizeof(int));
if (Q_map_temp == NULL)
goto error_Q_temp;
Q_map = (int *) malloc (prob->n * sizeof(int));
if (Q_map == NULL)
goto error_Q;
P_map = (int *) malloc (prob->n * sizeof(int));
if (P_map == NULL)
goto error_P;
ix = argsort(prob->x, prob->n);
if (ix == NULL)
goto error_ix;
iy = argsort(prob->y, prob->n);
if (iy == NULL)
goto error_iy;
M_temp = (double *)malloc ((score->m[0]) * sizeof(double));
if (M_temp == NULL)
goto error_M_temp;
/* build xx, yy, xy, yx */
for (i=0; i<prob->n; i++)
{
xx[i] = prob->x[ix[i]];
yy[i] = prob->y[iy[i]];
xy[i] = prob->x[iy[i]];
yx[i] = prob->y[ix[i]];
}
/* x vs. y */
for (i=0; i<score->n; i++)
{
k = MAX((int) (param->c * (score->m[i]+1)), 1);
ret = EquipartitionYAxis(yy, prob->n, i+2, Q_map, &q);
if (ret)
goto error_0;
/* sort Q by x */
for (j=0; j<prob->n; j++)
Q_map_temp[iy[j]] = Q_map[j];
for (j=0; j<prob->n; j++)
Q_map[j] = Q_map_temp[ix[j]];
ret = GetSuperclumpsPartition(xx, prob->n, k, Q_map, P_map, &p);
if (ret)
goto error_0;
if (param->est == EST_MIC_APPROX)
ret = OptimizeXAxis(xx, yx, prob->n, Q_map, q, P_map, p, score->m[i]+1,
score->M[i]);
else /* EST_MIC_E */
ret = OptimizeXAxis(xx, yx, prob->n, Q_map, q, P_map, p,
MIN(i+2, score->m[i]+1), score->M[i]);
if (ret)
goto error_0;
}
/* y vs. x */
for (i=0; i<score->n; i++)
{
k = MAX((int) (param->c * (score->m[i]+1)), 1);
ret = EquipartitionYAxis(xx, prob->n, i+2, Q_map, &q);
if (ret)
goto error_0;
/* sort Q by y */
for (j=0; j<prob->n; j++)
Q_map_temp[ix[j]] = Q_map[j];
for (j=0; j<prob->n; j++)
Q_map[j] = Q_map_temp[iy[j]];
ret = GetSuperclumpsPartition(yy, prob->n, k, Q_map, P_map, &p);
if (ret)
goto error_0;
if (param->est == EST_MIC_APPROX)
ret = OptimizeXAxis(yy, xy, prob->n, Q_map, q, P_map, p, score->m[i]+1,
M_temp);
else /* EST_MIC_E */
ret = OptimizeXAxis(yy, xy, prob->n, Q_map, q, P_map, p,
MIN(i+2, score->m[i]+1), M_temp);
if (ret)
goto error_0;
if (param->est == EST_MIC_APPROX)
for (j=0; j<score->m[i]; j++)
score->M[j][i] = MAX(M_temp[j], score->M[j][i]);
else /* EST_MIC_E */
for (j=0; j<MIN(i+1, score->m[i]); j++)
score->M[j][i] = M_temp[j];
}
free(M_temp);
free(iy);
free(ix);
free(P_map);
free(Q_map);
free(Q_map_temp);
free(yx);
free(xy);
free(yy);
free(xx);
return score;
error_0:
free(M_temp);
error_M_temp:
free(iy);
error_iy:
free(ix);
error_ix:
free(P_map);
error_P:
free(Q_map);
error_Q:
free(Q_map_temp);
error_Q_temp:
free(yx);
error_yx:
free(xy);
error_xy:
free(yy);
error_yy:
free(xx);
error_xx:
for (i=0; i<score->n; i++)
free(score->M[i]);
free(score->M);
free(score->m);
free(score);
error_score:
return NULL;
}
/* See mine.h */
char *mine_check_parameter(mine_parameter *param)
{
if (((param->alpha <= 0.0) || (param->alpha > 1.0)) && (param->alpha < 4.0))
return "alpha must be in (0.0, 1.0] or >= 4.0";
if (param->c <= 0.0)
return "c must be > 0.0";
if ((param->est != EST_MIC_APPROX) && (param->est != EST_MIC_E))
return "unknown estimator";
return NULL;
}
/* See mine.h */
double mine_mic(mine_score *score)
{
int i, j;
double score_max = 0.0;
for (i=0; i<score->n; i++)
for (j=0; j<score->m[i]; j++)
if (score->M[i][j] > score_max)
score_max = score->M[i][j];
return score_max;
}
/* See mine.h */
double mine_mas(mine_score *score)
{
int i, j;
double score_curr;
double score_max = 0.0;
for (i=0; i<score->n; i++)
for (j=0; j<score->m[i]; j++)
{
score_curr = fabs(score->M[i][j] - score->M[j][i]);
if (score_curr > score_max)
score_max = score_curr;
}
return score_max;
}
/* See mine.h */
double mine_mev(mine_score *score)
{
int i, j;
double score_max = 0.0;
for (i=0; i<score->n; i++)
for (j=0; j<score->m[i]; j++)
if (((j==0) || (i==0)) && score->M[i][j] > score_max)
score_max = score->M[i][j];
return score_max;
}
/* See mine.h */
double mine_mcn(mine_score *score, double eps)
{
int i, j;
double log_xy;
double score_min = DBL_MAX;
double delta = 0.0001; /* avoids overestimation of mcn */
double mic = mine_mic(score);
for (i=0; i<score->n; i++)
for (j=0; j<score->m[i]; j++)
{
log_xy = log((i+2) * (j+2)) / log(2.0);
if (((score->M[i][j]+delta) >= ((1.0 - eps) * mic))
&& (log_xy < score_min))
score_min = log_xy;
}
return score_min;
}
/* See mine.h */
double mine_mcn_general(mine_score *score)
{
int i, j;
double log_xy;
double score_min = DBL_MAX;
double delta = 0.0001; /* avoids overestimation of mcn */
double mic = mine_mic(score);
for (i=0; i<score->n; i++)
for (j=0; j<score->m[i]; j++)
{
log_xy = log((i+2) * (j+2)) / log(2.0);
if (((score->M[i][j]+delta) >= (mic * mic)) && (log_xy < score_min))
score_min = log_xy;
}
return score_min;
}
/* See mine.h */
double mine_tic(mine_score *score, int norm)
{
int i, j, k=0;
double tic = 0.0;
for (i=0; i<score->n; i++)
for (j=0; j<score->m[i]; j++)
{
tic += score->M[i][j];
k++;
}
if (norm)
tic /= k;
return tic;
}
/* See mine.h */
double mine_gmic(mine_score *score, double p)
{
int i, j, k, Z, B;
mine_score *score_sub, *C_star;
double gmic;
/* alloc score_sub */
score_sub = (mine_score *) malloc (sizeof(mine_score));
/* alloc C_star */
C_star = (mine_score *) malloc (sizeof(mine_score));
C_star->m = (int *) malloc(score->n * sizeof(int));
C_star->M = (double **) malloc (score->n * sizeof(double *));
for (i=0; i<score->n; i++)
C_star->M[i] = (double *) malloc ((score->m[i]) * sizeof(double));
/* prepare score_sub */
score_sub->M = score->M;
/* prepare C_star */
C_star->n = score->n;
for (i=0; i<C_star->n; i++)
C_star->m[i] = score->m[i];
/* compute C_star */
for (i=0; i<score->n; i++)
for (j=0; j<score->m[i]; j++)
{
B = (i+2) * (j+2);
score_sub->n = MAX((int) floor(B/2.0), 2) - 1;
score_sub->m = (int *) malloc(score_sub->n * sizeof(int));
for (k=0; k<score_sub->n; k++)
score_sub->m[k] = (int) floor((double) B / (double) (k+2)) - 1;
C_star->M[i][j] = mine_mic(score_sub);
free(score_sub->m);
}
/* p=0 -> geometric mean */
if (p == 0.0)
{
Z = 0;
gmic = 1.0;
for (i=0; i<C_star->n; i++)
for (j=0; j<C_star->m[i]; j++)
{
gmic *= C_star->M[i][j];
Z++;
}
gmic = pow(gmic, (double) Z);
}
/* p!=0 -> generalized mean */
else
{
Z = 0;
gmic = 0.0;
for (i=0; i<C_star->n; i++)
for (j=0; j<C_star->m[i]; j++)
{
gmic += pow(C_star->M[i][j], p);
Z++;
}
gmic /= (double) Z;
gmic = pow(gmic, 1.0/p);
}
free(score_sub);
if (C_star->n != 0)
{
free(C_star->m);
for (i=0; i<C_star->n; i++)
free(C_star->M[i]);
free(C_star->M);
}
free(C_star);
return gmic;
}
/* See mine.h */
void mine_free_score(mine_score **score)
{
int i;
mine_score *score_ptr = *score;
if (score_ptr != NULL)
{
if (score_ptr->n != 0)
{
free(score_ptr->m);
for (i=0; i<score_ptr->n; i++)
free(score_ptr->M[i]);
free(score_ptr->M);
}
free(score_ptr);
score_ptr = NULL;
}
}
mine_pstats *mine_compute_pstats(mine_matrix *X, mine_parameter *param)
{
int i, j, k;
mine_problem prob;
mine_score *score;
mine_pstats *stats;
/* Allocate memory for stats */
stats = (mine_pstats *) malloc(sizeof(mine_pstats));
stats->n = (X->n * (X->n-1)) / 2;
stats->mic = (double *) malloc(stats->n * sizeof(double));
stats->tic = (double *) malloc(stats->n * sizeof(double));
k = 0;
prob.n = X->m;
for (i=0; i<X->n-1; i++)
{
prob.x = &X->data[i*X->m];
for (j=i+1; j<X->n; j++)
{
prob.y = &X->data[j*X->m];
score = mine_compute_score(&prob, param);
stats->mic[k] = mine_mic(score);
stats->tic[k] = mine_tic(score, TRUE);
mine_free_score(&score);
k++;
}
}
return stats;
}
mine_cstats *mine_compute_cstats(mine_matrix *X, mine_matrix *Y,
mine_parameter *param)
{
int i, j, k;
mine_cstats *stats;
mine_problem prob;
mine_score *score;
if (X->m != Y->m)
return NULL;
/* Allocate memory for stats */
stats = (mine_cstats *) malloc(sizeof(mine_cstats));
stats->n = X->n;
stats->m = Y->n;
stats->mic = (double *) malloc((stats->n * stats->m) * sizeof(double));
stats->tic = (double *) malloc((stats->n * stats->m) * sizeof(double));
k = 0;
prob.n = X->m;
for (i=0; i<X->n; i++)
{
prob.x = &X->data[i*X->m];
for (j=0; j<Y->n; j++)
{
prob.y = &Y->data[j*Y->m];
score = mine_compute_score(&prob, param);
stats->mic[k] = mine_mic(score);
stats->tic[k] = mine_tic(score, TRUE);
mine_free_score(&score);
k++;
}
}
return stats;
}

最后

以上就是无情夕阳为你收集整理的最大信息系数(maximal information coefficient,MIC)核心程序的全部内容,希望文章能够帮你解决最大信息系数(maximal information coefficient,MIC)核心程序所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(69)

评论列表共有 0 条评论

立即
投稿
返回
顶部