单元格密度计算
1 生成网格坐标
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21x_l = input('多少列 x轴范围') y_l = input('多少行 y轴范围') x_l = int(x_l) y_l = int(y_l) #设置好画图的网格 def set_ax(): ax = plt.axes([0.05, 0.05, 0.95, 0.95]) #[xmin,ymin,xmax,ymax] ax.set_xlim(-1,x_l) ax.set_ylim(-1,y_l) ax.xaxis.set_major_locator(plt.MultipleLocator(1.0))#设置x主坐标间隔 1 ax.xaxis.set_minor_locator(plt.MultipleLocator(0.5))#设置x从坐标间隔 0.5 ax.yaxis.set_major_locator(plt.MultipleLocator(1.0))#设置y主坐标间隔 1 ax.yaxis.set_minor_locator(plt.MultipleLocator(0.5))#设置y从坐标间隔 0.5 ax.grid(which='major', axis='x', linewidth=0.75, linestyle='-', color='0.75')#由每个x主坐标出发对x主坐标画垂直于x轴的线段 ax.grid(which='minor', axis='x', linewidth=0.25, linestyle='-', color='0.75')#由每个x主坐标出发对x主坐标画垂直于x轴的线段 ax.grid(which='major', axis='y', linewidth=0.75, linestyle='-', color='0.75') ax.grid(which='minor', axis='y', linewidth=0.25, linestyle='-', color='0.75') ax.set_xticks(np.arange(0, x_l + 2, 1)) ax.set_yticks(np.arange(0, y_l + 2, 1)) return ax
2 随机生成多条轨迹
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14num = input('多少轨迹 随机') num = int(num) #模拟轨迹 for i in range(num): x0 = np.random.randint(0,x_l + 1) y0 = np.random.randint(0,y_l + 1) x1 = np.random.randint(0,x_l + 1) y1 = np.random.randint(0,y_l + 1) while(x1 == x0 and y1 == y0): x1 = np.random.randint(0,x_l + 1) y1 = np.random.randint(0,y_l + 1) plt.plot([x0,x1],[y0,y1],c='black')
3 计算单元格密度
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38#叉积 判断相交用 def mult(a, b, c): return (a[0] - c[0]) * (b[1] - c[1]) - (b[0] - c[0]) * (a[1] - c[1]) #判断两线段是否相交 def line_Flag(a,b,c,d): if (max(a[0], b[0]) < min(c[0], d[0])): return False if (max(a[1], b[1]) < min(c[1], d[1])): return False if (max(c[0], d[0]) < min(a[0], b[0])): return False if (max(c[1], d[1]) < min(a[1], b[1])): return False if (mult(c, b, a) * mult(b, d, a) < 0): return False if (mult(a, d, c) * mult(d, b, c) < 0): return False return True #判断线段经没经过【x,y】处的单元格 def judge_Cell(p1,p2,c): #p1 p2是线段的两个点 c是【x,y】 x = c[0] y = c[1] if(line_Flag(p1,p2,[x - 0.5,y - 0.5],[x - 0.5,y + 0.5]) or line_Flag(p1,p2,[x + 0.5,y + 0.5],[x + 0.5,y - 0.5]) or line_Flag(p1,p2,[x + 0.5,y + 0.5],[x - 0.5,y + 0.5]) or line_Flag(p1,p2,[x + 0.5,y - 0.5],[x - 0.5,y - 0.5])): return True else: return False #如果和单元格相交 单元格密度+1 for x in range(p_s[0],p_f[0] + 1): for y in range(p_s[1],p_f[1] + 1): if(judge_Cell([x0,y0],[x1,y1],[x,y])): X[y][x]+=1
4 根据密度绘制热图
复制代码
1
2
3
4
5
6
7
8
9min_density = input('感兴趣区域的密度阈值') min_density = math.ceil(float(min_density)) X1 = set(X,min_density) im = ax.imshow(X,cmap=plt.cm.summer,interpolation='spline36',vmin=d_min,vmax=d_max,aspect='equal') plt.colorbar(im, shrink=0.5) plt.show()
感兴趣区域提取
1 密度>=阈值的单元格降序集合
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13def set(X,min_density): set = [] d_max = X[0][0] for i in X: for j in i: if j > d_max: d_max = j for density in range(d_max,min_density - 1,-1): index = np.argwhere(X == density) set.append(index) return set
2 拓展区域
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55#从[x,y]坐标点 开始 拓展区域 def extend(X,use,point,min_density): #print("------") region = [point,point]#一个矩形区域 左下和右上 的坐标 avg_density = X[point[1]][point[0]] #当区域平均密度大于阈值时 while(avg_density >= min_density): x0 = region[0][0] y0 = region[0][1] x1 = region[1][0] y1 = region[1][1] left = 0 right = 0 up = 0 down = 0 #四个方向拓展 if(x0 - 1 >= 0): if(not (use_Region(use,[[x0 - 1,y0],[x0 - 1,y1]]))): region_l = [[x0 - 1,y0],[x1,y1]] left = get_Avg_Density(X,region_l) if(x1 + 1 <= x_l): if(not(use_Region(use,[[x1 + 1,y0],[x1 + 1,y1]]))): region_r = [[x0,y0],[x1 + 1,y1]] right = get_Avg_Density(X,region_r) if(y1 + 1 <= y_l): if(not(use_Region(use,[[x0,y1 + 1],[x1,y1 + 1]]))): region_u = [[x0,y0],[x1,y1 + 1]] up = get_Avg_Density(X,region_u) if(y0 - 1 >= 0): if(not(use_Region(use,[[x0,y0 - 1],[x1,y0 - 1]]))): region_d = [[x0,y0 - 1],[x1,y1]] down = get_Avg_Density(X,region_d) # print("4:",left,right,up,down) max_density = max(left,right,up,down) #print("max",max_density) avg_density = max_density if(max_density >= min_density): if(left == max_density): region = region_l elif (right == max_density): region = region_r elif(up == max_density): region = region_u else: region = region_d change_To_Use(use,region) #print(avg_density) else: draw_Region(region)
3 图中框选出ROI
复制代码
1
2
3
4
5
6
7
8
9
10
11
12# 画出区域 def draw_Region(region): x0 = region[0][0] y0 = region[0][1] x1 = region[1][0] y1 = region[1][1] #for x in range(x0,x1+1): # for y in range(y0,y1+1): # plt.scatter(x,y,c='black') rect = plt.Rectangle((x0 - 0.5,y0 - 0.5),x1 - x0 + 1,y1 - y0 + 1,linewidth=2,edgecolor='r',facecolor='none') plt.gca().add_patch(rect)
最后
以上就是鳗鱼老鼠最近收集整理的关于Python提取感兴趣区域ROI案例(二)实现过程单元格密度计算感兴趣区域提取的全部内容,更多相关Python提取感兴趣区域ROI案例(二)实现过程单元格密度计算感兴趣区域提取内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复